广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 131-142.doi: 10.16088/j.issn.1001-6600.2022010501

• 研究论文 • 上一篇    下一篇

竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理

邓华1,2*, 张俊渝1,2, 黄瑞1,2, 王威1,2, 胡乐宁1,2*   

  1. 1.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学), 广西 桂林 541006;
    2.广西师范大学环境与资源学院, 广西 桂林 541006
  • 收稿日期:2022-01-05 修回日期:2022-03-03 出版日期:2023-01-25 发布日期:2023-03-07
  • 通讯作者: 邓华(1977—),女,湖南祁阳人,广西师范大学教授,博士。E-mail:denghua@gxnu.edu.cn; 胡乐宁(1980—),女,河北保定人,广西师范大学副教授,博士。E-mail:hulening@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(41301343); 珍稀濒危动植物生态与环境保护教育部重点实验室研究基金(ERESEP2021Z15)

Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ)

DENG Hua1,2*, ZHANG Junyu1,2, HUANG Rui1,2, WANG Wei1,2, HU Lening1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Edncation, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-01-05 Revised:2022-03-03 Online:2023-01-25 Published:2023-03-07

摘要: 本文以竹制生物炭为原材料,通过共沉淀法负载氧化锌制备锌改性生物炭(ZnBC)。通过批量实验探究ZnBC对废水中Cr(Ⅵ)的吸附性能,采用SEM、XRD、FTIR和XPS等分析方法对吸附Cr(Ⅵ)前后的ZnBC进行表征。实验结果表明,在pH=7、反应时间720 min、反应温度298 K时,ZnBC对Cr(Ⅵ)的吸附效果最好。Cr(Ⅵ)的吸附结果符合拟二级(PSO)和Langmuir模型理论,表明吸附类型为化学吸附和单分子层吸附;通过Langmuir模型拟合得出的饱和吸附量为106.383 mg/g。共存离子实验表明,ZnBC对Cr(Ⅵ)有较好的选择吸附性。ZnBC对Cr(Ⅵ)的吸附机理主要包括光催化还原、官能团络合、阳离子-π以及沉淀作用。研究表明,ZnBC作为去除水溶液中Cr(Ⅵ)的吸附剂具有较大的应用潜力。

关键词: 竹制生物炭, 共沉淀法, 氧化锌, Cr(Ⅵ), 吸附机理

Abstract: Zn-modified biochar (ZnBC) was prepared from bamboo biochar by co-precipitation loading ZnO. The adsorption performance of ZnBC for Cr(Ⅵ) in wastewater was investigated by batch experiments. The ZnBC before and after adsorption was characterized by SEM, XRD, FTIR and XPS. The experimental results show that the adsorption of Cr(Ⅵ) by ZnBC is the best at pH=7, reaction time 720 min and reaction temperature 298 K. The adsorption results of Cr(Ⅵ) conform to the pseudo-second-order (PSO) and Langmuir model theory, indicating that the adsorption types are chemical adsorption and monolayer adsorption. The saturated adsorption capacity fitted by Langmuir model is 106.383 mg/g. The coexisting ion experiments show that ZnBC has good selective adsorption for Cr(Ⅵ). The adsorption mechanism of Cr(Ⅵ) by ZnBC mainly includes photocatalytic reduction, functional group complexation, cation-π and precipitation. The results show that ZnBC has great application potential as adsorbent for removing Cr(Ⅵ) from aqueous solution.

Key words: bamboo biochar, co-precipitation, ZnO, Cr(Ⅵ), adsorption mechanism

中图分类号: 

  • X522
[1] 郑海霞,王月,陈芬,等. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版),2018,36(4):99-107. DOI:10.16088/j.issn.1001-6600.2018.04.013.
[2]ZHANG Y T,BOPARAI H K,WANG J G,et al. Effect of low permeability zone location on remediation of Cr(VI)-contaminated media by electrokinetics combined with a modified-zeolite barrier[J]. Journal of Hazardous Materials,2022,426:127785. DOI:10.1016/j.jhazmat.2021.127785.
[3]XU X Y,HUANG H,ZHANG Y,et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption[J]. Environmental Pollution,2019,244:423-430. DOI:10.1016/j.envpol.2018.10.068.
[4]WANG H,TIAN Z Z,JIANG L,et al. Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar[J]. Journal of Dispersion Science and Technology,2017,38(6):815-825. DOI:10.1080/01932691.2016.1203333.
[5]中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB/T 5749—2006[S]. 北京:中国标准出版社,2007.
[6]李金英,孙海峰,赵旭,等. 改性类石墨相氮化碳复合催化剂可见光催化还原水中Cr6+的研究[J]. 化工新型材料,2020,48(2):267-271. DOI:10.19817/j.cnki.issn1006-3536.2020.02.058.
[7]王麒,薛罡,钱雅洁,等. ZVI类Fenton-混凝同步去除印染废水中苯胺、Cr6+、锑[J]. 工业水处理,2019,39(9):87-90.
[8]LU J,WANG Z R,LIU Y L,et al. Removal of Cr ions from aqueous solution using batch electrocoagulation:Cr removal mechanism and utilization rate of in situ generated metal ions[J]. Process Safety and Environmental Protection,2016,104:436-443. DOI:10.1016/j.psep.2016.04.023.
[9]KAHRAMAN H T. Development of an adsorbent via chitosan nano-organoclay assembly to remove hexavalent chromium from wastewater[J]. International Journal of Biological Macromolecules,2017,94:202-209. DOI:10.1016/j.ijbiomac.2016.09.111.
[10]郭辰,韩彪,潘翠,等. 假单胞菌去除Cr(Ⅵ)的条件优化[J]. 广西师范大学学报(自然科学版),2021,39(3):113-121. DOI:10.16088 /j.issn.1001-6600.2020090705.
[11]RATHI B S,KUMAR P S,SHOW P L. A review on effective removal of emerging contaminants from aquatic systems:current trends and scope for further research[J]. Journal of Hazardous Materials,2021,409:124413. DOI:10.1016/j.jhazmat.2020.124413.
[12]翟付杰,张超,宋刚福,等. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究[J]. 环境科学学报,2021,41(5):1891-1900. DOI:10.13671/j.hjkxxb.2020.0558.
[13]ZHAO B W,SHI X Y,MA F F,et al. Adsorption of Cr(VI) onto biochars derived from typical vegetable oil crop biomasses originating in loess areas[J]. Fresenius Environmental Bulletin,2016,25(2):588-601.
[14]RAJAPAKSHA A U,CHEN S S,TSANG D C W,et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water:potential and implication of biochar modification[J]. Chemosphere,2016,148:276-291. DOI:10.1016/j.chemosphere.2016.01.043.
[15]SHU Y,TANG C F,HU X J,et al. H3PO4-activated cattail carbon production and application in chromium removal from aqueous solution:process optimization and removal mechanism[J]. Water,2018,10(6):754. DOI:10.3390/w10060754.
[16]FEI Y H,LI M Z,YE Z F,et al. The pH-sensitive sorption governed reduction of Cr(VI) by sludge derived biochar and the accelerating effect of organic acids[J]. Journal of Hazardous Materials,2022,423:127205. DOI:10.1016/j.jhazmat.2021.127205.
[17]陈林,平巍,闫斌,等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程,2020,38(8):119-124. DOI:10.13205/j.hjgc.202008020.
[18]靳翠鑫,杜玉成,李杨,等. 氨基功能化硅藻土复合纳米材料的制备及其对Pb(Ⅱ)和Cr(Ⅵ)的吸附性能[J]. 中国粉体技术,2020,26(4):1-8. DOI:10.13732/j.issn.1008-5548.2020.04.001.
[19]CHOPPALA G,BOLAN N,KUNHIKRISHNAN A,et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere,2016,144:374-381. DOI:10.1016/j.chemosphere.2015.08.043.
[20]POLIUKHOVA V,KHAN S,ZHU Q H,et al. ZnS/ZnO nanosheets obtained by thermal treatment of ZnS/ethylenediamine as a Z-scheme photocatalyst for H2 generation and Cr(VI) reduction[J]. Applied Surface Science,2022,575:151773. DOI:10.1016/j.apsusc.2021.151773.
[21]WANG R J,GUO Z W,CAI C J,et al. Practices and roles of bamboo industry development for alleviating poverty in China[J]. Clean Technologies and Environmental Policy,2021,23(6):1687-1699. DOI:10.1007/s10098-021-02074-3.
[22]辜夕容,邓雪梅,刘颖旎,等. 竹废弃物的资源化利用研究进展[J]. 农业工程学报,2016,30(1):236-242.
[23]郑龙,吴义强,左迎峰. 竹剩余物资源化利用研究现状与展望[J]. 世界林业研究,2021,34(3):82-88. DOI:10.13348/j.cnki.sjlyyj.2021.0002.y.
[24]YANG Y,LIN X,WEI B,et al. Evaluation of adsorption potential of bamboo biochar for metal-complex dye:equilibrium,kinetics and artificial neural network modeling[J]. International Journal of Environmental Science Technology,2014,11(4):1093-1100. DOI:10.1007/s13762-013-0306-0.
[25]SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal,2016,300:254-263. DOI:10.1016/j.cej.2016.04.079.
[26]DELLA P L,KOMREK M,BORDAS F,et al. Adsorption of copper,cadmium,lead and zinc onto a synthetic manganese oxide[J]. Journal of Colloid Interface Science,2013,399:99-106. DOI:10.1016/j.jcis.2013.02.029.
[27]SADIQ H,SHER F,SEHAR S,et al. Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications[J]. Journal of Molecular Liquids,2021,335:116567. DOI:10.1016/j.molliq.2021.116567.
[28]邹意义,袁怡,沈涛,等. FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究[J]. 环境科学学报,2021,41(9):3478-3486. DOI:10.13671/j.hjkxxb.2021.0058.
[29]赵银,令狐文生. 活性炭吸附去除废水中铬(Ⅵ)的研究[J]. 河南化工,2020,37(12):14-17. DOI:10.14173/j.cnki.hnhg.2020.12.005.
[30]DIN S U,KHAN M S,HUSSAIN S,et al. Adsorptive mechanism of chromium adsorption on siltstone-nanomagnetite-biochar composite[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31(4):1608-1620. DOI:10.1007/s10904-020-01829-7.
[31]YANG Z H,CAO J,CHEN Y P,et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution[J]. Microporous and Mesoporous Materials,2019,277:277-285. DOI:10.1016/j.micromeso.2018.11.014.
[32]DONG X L,MA L N Q,LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190(1/2/3):909-915. DOI:10.1016/j.jhazmat.2011.04.008.
[33]邓华,李秋燕,周瑞爽,等. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版),2021,39(3):102-112. DOI:10.16088/j.Issn.1001-6600.2020061103.
[34]WANG X,CUI S P,YAN B L,et al. Isothermal adsorption characteristics and kinetics of Cr ions onto ettringite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2019,34(3):587-595. DOI:10.1007/s11595-019-2092-0.
[35]CHU G,ZHAO J,HUANG Y,et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores[J]. Environmental pollution,2018,240:1-9. DOI:10.1016/j.envpol.2018.04.003.
[36]GAN C,LIU Y G,TAN X F,et al. Effect of porous zinc-biochar nanocomposites on Cr(Ⅵ) adsorption from aqueous solution[J]. RSC Advances,2015,5(44):35107-35115. DOI:10.1039/c5ra04416b.
[37]YU J D,JIANG C Y,GUAN Q Q,et al. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere,2018,195:632-640. DOI:10.1016/j.chemosphere.2017.12.128.
[38]LIU H,ZHANG F,PENG Z Y. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites[J]. Scientific Reports,2019,9(1):3363. DOI:10.1038/s41598-019-40344-9.
[39]ZHOU M,YANG X N,SUN R H,et al. The contribution of lignocellulosic constituents to Cr(VI) reduction capacity of biochar-supported zerovalent iron[J]. Chemosphere,2021,263:127871. DOI:10.1016/j.chemosphere.2020.127871.
[40]王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学,2021,57(7):166-174.
[41]WANG B,LI F Y,WANG L. Enhanced hexavalent chromium(Cr(VI)) removal from aqueous solution by Fe-Mn oxide-modified cattail biochar:adsorption characteristics and mechanism[J]. Chemistry and Ecology,2020,36(2):138-154. DOI:10.1080/02757540.2019.1699537.
[42]SMAALI A,BERKANI M,MEROUANE F,et al. Photocatalytic-persulfate-oxidation for diclofenac removal from aqueous solutions:modeling,optimization and biotoxicity test assessment[J]. Chemosphere,2021,266:129158. DOI:10.1016/j.chemosphere.2020.129158.
[43]KAJBAF F,DERIKVAND E,BABARSAD M S,et al. Lotus-leaf biochar modified with metal oxide nanoparticles:synthesise,characterisation and application to the photocatalytic removal of Cr6+,Cr3+ and Co2+ ions[J/OL]. International Journal of Environmental Analytical Chemistry:1-17[2022-01-05].https:∥ doi.org/10.1080/03067319.2021.1944621. DOI:10.1080/03067319.2021.1944621.
[44]张奎,王雪梅,李玉环,等. 硫改性牛粪生物炭对Hg2+的高效吸附及机理[J]. 环境工程,2022,40(4):79-88.
[45]YU Y,AN Q,JIN L,et al. Unraveling sorption of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar:implicit mechanism and application[J]. Bioresource Technology,2020,297:122466. DOI:10.1016/j.biortech.2019.122466.
[46]WANG X S,CHEN L F,LI F Y,et al. Removal of Cr(VI) with wheat-residue derived black carbon:reaction mechanism and adsorption performance[J]. Journal of Hazardous Materials,2010,175(1/2/3):816-822. DOI:10.1016/j.jhazmat.2009.10.082.
[47]JOAO C A M,ERIK S J G,SANTIAGO G H,et al. Organosulphur-modified biochar:an effective green adsorbent for removing metal species in aquatic systems[J]. Surfaces and Interfaces,2021,22:100822. DOI:10.1016/j.surfin.2020.100822.
[1] 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112.
[2] 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128-133.
[3] 冯玉芝, 彭桂花, 梁振华, 卢锋奇, 韦燕燕. 共沉淀法合成CaMoO4:Eu3+0.18,B3+0.1红色荧光粉[J]. 广西师范大学学报(自然科学版), 2010, 28(2): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 许伦辉,尹诗德,刘易家. 基于模拟退火的自适应布谷鸟算法求解公交调度问题[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 1 -7 .
[2] 肖飞鹏, 李晖, 尹辉, 王月. 基于生态系统服务的青狮潭水库生态补偿研究[J]. 广西师范大学学报(自然科学版), 2014, 32(2): 162 -167 .
[3] 周子豪, 刘禹含, 谭艳红, 蒙玉清, 巫虹颖, 黄锦龙, 武正军. 酶法制备福寿螺内脏团抗菌肽[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 154 -161 .
[4] 杜锦丰, 王海荣, 梁焕, 王栋. 基于表示学习的跨模态检索方法研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(3): 1 -12 .
[5] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[6] 何南, 张小丽, 陈宁, 陈泽柠, 武正军. 基于SSR分析广东罗坑鳄蜥饲养种群的遗传结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 180 -187 .
[7] 邓华, 李明顺, 陈英旭, 于方明, 陈春强, 周振明. 锰在短毛蓼不同器官中的亚细胞分布及化学形态[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 58 -62 .
[8] 王志俊, 余雪丽. 基于本体知识查询树的语义路由检索模型[J]. 广西师范大学学报(自然科学版), 2010, 28(1): 131 -134 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发