|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 131-142.doi: 10.16088/j.issn.1001-6600.2022010501
邓华1,2*, 张俊渝1,2, 黄瑞1,2, 王威1,2, 胡乐宁1,2*
DENG Hua1,2*, ZHANG Junyu1,2, HUANG Rui1,2, WANG Wei1,2, HU Lening1,2*
摘要: 本文以竹制生物炭为原材料,通过共沉淀法负载氧化锌制备锌改性生物炭(ZnBC)。通过批量实验探究ZnBC对废水中Cr(Ⅵ)的吸附性能,采用SEM、XRD、FTIR和XPS等分析方法对吸附Cr(Ⅵ)前后的ZnBC进行表征。实验结果表明,在pH=7、反应时间720 min、反应温度298 K时,ZnBC对Cr(Ⅵ)的吸附效果最好。Cr(Ⅵ)的吸附结果符合拟二级(PSO)和Langmuir模型理论,表明吸附类型为化学吸附和单分子层吸附;通过Langmuir模型拟合得出的饱和吸附量为106.383 mg/g。共存离子实验表明,ZnBC对Cr(Ⅵ)有较好的选择吸附性。ZnBC对Cr(Ⅵ)的吸附机理主要包括光催化还原、官能团络合、阳离子-π以及沉淀作用。研究表明,ZnBC作为去除水溶液中Cr(Ⅵ)的吸附剂具有较大的应用潜力。
中图分类号:
[1] 郑海霞,王月,陈芬,等. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版),2018,36(4):99-107. DOI:10.16088/j.issn.1001-6600.2018.04.013. [2]ZHANG Y T,BOPARAI H K,WANG J G,et al. Effect of low permeability zone location on remediation of Cr(VI)-contaminated media by electrokinetics combined with a modified-zeolite barrier[J]. Journal of Hazardous Materials,2022,426:127785. DOI:10.1016/j.jhazmat.2021.127785. [3]XU X Y,HUANG H,ZHANG Y,et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption[J]. Environmental Pollution,2019,244:423-430. DOI:10.1016/j.envpol.2018.10.068. [4]WANG H,TIAN Z Z,JIANG L,et al. Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar[J]. Journal of Dispersion Science and Technology,2017,38(6):815-825. DOI:10.1080/01932691.2016.1203333. [5]中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB/T 5749—2006[S]. 北京:中国标准出版社,2007. [6]李金英,孙海峰,赵旭,等. 改性类石墨相氮化碳复合催化剂可见光催化还原水中Cr6+的研究[J]. 化工新型材料,2020,48(2):267-271. DOI:10.19817/j.cnki.issn1006-3536.2020.02.058. [7]王麒,薛罡,钱雅洁,等. ZVI类Fenton-混凝同步去除印染废水中苯胺、Cr6+、锑[J]. 工业水处理,2019,39(9):87-90. [8]LU J,WANG Z R,LIU Y L,et al. Removal of Cr ions from aqueous solution using batch electrocoagulation:Cr removal mechanism and utilization rate of in situ generated metal ions[J]. Process Safety and Environmental Protection,2016,104:436-443. DOI:10.1016/j.psep.2016.04.023. [9]KAHRAMAN H T. Development of an adsorbent via chitosan nano-organoclay assembly to remove hexavalent chromium from wastewater[J]. International Journal of Biological Macromolecules,2017,94:202-209. DOI:10.1016/j.ijbiomac.2016.09.111. [10]郭辰,韩彪,潘翠,等. 假单胞菌去除Cr(Ⅵ)的条件优化[J]. 广西师范大学学报(自然科学版),2021,39(3):113-121. DOI:10.16088 /j.issn.1001-6600.2020090705. [11]RATHI B S,KUMAR P S,SHOW P L. A review on effective removal of emerging contaminants from aquatic systems:current trends and scope for further research[J]. Journal of Hazardous Materials,2021,409:124413. DOI:10.1016/j.jhazmat.2020.124413. [12]翟付杰,张超,宋刚福,等. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究[J]. 环境科学学报,2021,41(5):1891-1900. DOI:10.13671/j.hjkxxb.2020.0558. [13]ZHAO B W,SHI X Y,MA F F,et al. Adsorption of Cr(VI) onto biochars derived from typical vegetable oil crop biomasses originating in loess areas[J]. Fresenius Environmental Bulletin,2016,25(2):588-601. [14]RAJAPAKSHA A U,CHEN S S,TSANG D C W,et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water:potential and implication of biochar modification[J]. Chemosphere,2016,148:276-291. DOI:10.1016/j.chemosphere.2016.01.043. [15]SHU Y,TANG C F,HU X J,et al. H3PO4-activated cattail carbon production and application in chromium removal from aqueous solution:process optimization and removal mechanism[J]. Water,2018,10(6):754. DOI:10.3390/w10060754. [16]FEI Y H,LI M Z,YE Z F,et al. The pH-sensitive sorption governed reduction of Cr(VI) by sludge derived biochar and the accelerating effect of organic acids[J]. Journal of Hazardous Materials,2022,423:127205. DOI:10.1016/j.jhazmat.2021.127205. [17]陈林,平巍,闫斌,等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程,2020,38(8):119-124. DOI:10.13205/j.hjgc.202008020. [18]靳翠鑫,杜玉成,李杨,等. 氨基功能化硅藻土复合纳米材料的制备及其对Pb(Ⅱ)和Cr(Ⅵ)的吸附性能[J]. 中国粉体技术,2020,26(4):1-8. DOI:10.13732/j.issn.1008-5548.2020.04.001. [19]CHOPPALA G,BOLAN N,KUNHIKRISHNAN A,et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere,2016,144:374-381. DOI:10.1016/j.chemosphere.2015.08.043. [20]POLIUKHOVA V,KHAN S,ZHU Q H,et al. ZnS/ZnO nanosheets obtained by thermal treatment of ZnS/ethylenediamine as a Z-scheme photocatalyst for H2 generation and Cr(VI) reduction[J]. Applied Surface Science,2022,575:151773. DOI:10.1016/j.apsusc.2021.151773. [21]WANG R J,GUO Z W,CAI C J,et al. Practices and roles of bamboo industry development for alleviating poverty in China[J]. Clean Technologies and Environmental Policy,2021,23(6):1687-1699. DOI:10.1007/s10098-021-02074-3. [22]辜夕容,邓雪梅,刘颖旎,等. 竹废弃物的资源化利用研究进展[J]. 农业工程学报,2016,30(1):236-242. [23]郑龙,吴义强,左迎峰. 竹剩余物资源化利用研究现状与展望[J]. 世界林业研究,2021,34(3):82-88. DOI:10.13348/j.cnki.sjlyyj.2021.0002.y. [24]YANG Y,LIN X,WEI B,et al. Evaluation of adsorption potential of bamboo biochar for metal-complex dye:equilibrium,kinetics and artificial neural network modeling[J]. International Journal of Environmental Science Technology,2014,11(4):1093-1100. DOI:10.1007/s13762-013-0306-0. [25]SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal,2016,300:254-263. DOI:10.1016/j.cej.2016.04.079. [26]DELLA P L,KOMREK M,BORDAS F,et al. Adsorption of copper,cadmium,lead and zinc onto a synthetic manganese oxide[J]. Journal of Colloid Interface Science,2013,399:99-106. DOI:10.1016/j.jcis.2013.02.029. [27]SADIQ H,SHER F,SEHAR S,et al. Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications[J]. Journal of Molecular Liquids,2021,335:116567. DOI:10.1016/j.molliq.2021.116567. [28]邹意义,袁怡,沈涛,等. FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究[J]. 环境科学学报,2021,41(9):3478-3486. DOI:10.13671/j.hjkxxb.2021.0058. [29]赵银,令狐文生. 活性炭吸附去除废水中铬(Ⅵ)的研究[J]. 河南化工,2020,37(12):14-17. DOI:10.14173/j.cnki.hnhg.2020.12.005. [30]DIN S U,KHAN M S,HUSSAIN S,et al. Adsorptive mechanism of chromium adsorption on siltstone-nanomagnetite-biochar composite[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31(4):1608-1620. DOI:10.1007/s10904-020-01829-7. [31]YANG Z H,CAO J,CHEN Y P,et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution[J]. Microporous and Mesoporous Materials,2019,277:277-285. DOI:10.1016/j.micromeso.2018.11.014. [32]DONG X L,MA L N Q,LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190(1/2/3):909-915. DOI:10.1016/j.jhazmat.2011.04.008. [33]邓华,李秋燕,周瑞爽,等. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版),2021,39(3):102-112. DOI:10.16088/j.Issn.1001-6600.2020061103. [34]WANG X,CUI S P,YAN B L,et al. Isothermal adsorption characteristics and kinetics of Cr ions onto ettringite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2019,34(3):587-595. DOI:10.1007/s11595-019-2092-0. [35]CHU G,ZHAO J,HUANG Y,et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores[J]. Environmental pollution,2018,240:1-9. DOI:10.1016/j.envpol.2018.04.003. [36]GAN C,LIU Y G,TAN X F,et al. Effect of porous zinc-biochar nanocomposites on Cr(Ⅵ) adsorption from aqueous solution[J]. RSC Advances,2015,5(44):35107-35115. DOI:10.1039/c5ra04416b. [37]YU J D,JIANG C Y,GUAN Q Q,et al. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere,2018,195:632-640. DOI:10.1016/j.chemosphere.2017.12.128. [38]LIU H,ZHANG F,PENG Z Y. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites[J]. Scientific Reports,2019,9(1):3363. DOI:10.1038/s41598-019-40344-9. [39]ZHOU M,YANG X N,SUN R H,et al. The contribution of lignocellulosic constituents to Cr(VI) reduction capacity of biochar-supported zerovalent iron[J]. Chemosphere,2021,263:127871. DOI:10.1016/j.chemosphere.2020.127871. [40]王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学,2021,57(7):166-174. [41]WANG B,LI F Y,WANG L. Enhanced hexavalent chromium(Cr(VI)) removal from aqueous solution by Fe-Mn oxide-modified cattail biochar:adsorption characteristics and mechanism[J]. Chemistry and Ecology,2020,36(2):138-154. DOI:10.1080/02757540.2019.1699537. [42]SMAALI A,BERKANI M,MEROUANE F,et al. Photocatalytic-persulfate-oxidation for diclofenac removal from aqueous solutions:modeling,optimization and biotoxicity test assessment[J]. Chemosphere,2021,266:129158. DOI:10.1016/j.chemosphere.2020.129158. [43]KAJBAF F,DERIKVAND E,BABARSAD M S,et al. Lotus-leaf biochar modified with metal oxide nanoparticles:synthesise,characterisation and application to the photocatalytic removal of Cr6+,Cr3+ and Co2+ ions[J/OL]. International Journal of Environmental Analytical Chemistry:1-17[2022-01-05].https:∥ doi.org/10.1080/03067319.2021.1944621. DOI:10.1080/03067319.2021.1944621. [44]张奎,王雪梅,李玉环,等. 硫改性牛粪生物炭对Hg2+的高效吸附及机理[J]. 环境工程,2022,40(4):79-88. [45]YU Y,AN Q,JIN L,et al. Unraveling sorption of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar:implicit mechanism and application[J]. Bioresource Technology,2020,297:122466. DOI:10.1016/j.biortech.2019.122466. [46]WANG X S,CHEN L F,LI F Y,et al. Removal of Cr(VI) with wheat-residue derived black carbon:reaction mechanism and adsorption performance[J]. Journal of Hazardous Materials,2010,175(1/2/3):816-822. DOI:10.1016/j.jhazmat.2009.10.082. [47]JOAO C A M,ERIK S J G,SANTIAGO G H,et al. Organosulphur-modified biochar:an effective green adsorbent for removing metal species in aquatic systems[J]. Surfaces and Interfaces,2021,22:100822. DOI:10.1016/j.surfin.2020.100822. |
[1] | 邓华, 李秋燕, 周瑞爽, 庞舒月, 刘金玉, 康彩艳. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 102-112. |
[2] | 刘庆业, 汪花, 黄丹华, 何世赫, 李娇, 罗钧恒, 张杏辉, 温桂清, 梁爱惠, 蒋治良. 碳纳米微粒共振瑞利散射能量转移测定铬(Ⅵ)[J]. 广西师范大学学报(自然科学版), 2016, 34(1): 128-133. |
[3] | 冯玉芝, 彭桂花, 梁振华, 卢锋奇, 韦燕燕. 共沉淀法合成CaMoO4:Eu3+0.18,B3+0.1红色荧光粉[J]. 广西师范大学学报(自然科学版), 2010, 28(2): 83-86. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |