广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 143-154.doi: 10.16088/j.issn.1001-6600.2021112401

• 研究论文 • 上一篇    下一篇

基于网络药理学和分子对接探讨瑶山甜茶治疗2型糖尿病的作用机制

梁林盼1,2, 凌雪3, 方姣1, 苏志恒3, 郑华1*   

  1. 1.广西医科大学生命科学研究院, 广西 南宁 530021;
    2.柳州市人民医院, 广西 柳州 545006;
    3.广西医科大学药学院, 广西 南宁 530021
  • 收稿日期:2021-11-24 修回日期:2022-01-15 出版日期:2023-01-25 发布日期:2023-03-07
  • 通讯作者: 郑华(1980—),女,广西贵港人,广西医科大学副研究员,博士。E-mail:zhenghua@gxmu.edu.cn
  • 基金资助:
    国家自然科学基金(81660697); 广西高校中青年教师基础能力提升项目(KY2016LX046); 广西再生医学重点实验室开放课题(桂再重开202002); 广西医科大学大学生创新创业训练计划项目(2018123)

Mechanism of Rubus suavissmus S. Lee in Intervention of Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking Method

LIANG Linpan1,2, LING Xue3, FANG Jiao1, SU Zhiheng3, ZHENG Hua1*   

  1. 1. Life Sciences Institute, Guangxi Medical University, Nanning Guangxi 530021, China;
    2. Liuzhou People’s Hospital, Liuzhou Guangxi 545006, China;
    3. College of Pharmacy, Guangxi Medical University, Nanning Guangxi 530021, China
  • Received:2021-11-24 Revised:2022-01-15 Online:2023-01-25 Published:2023-03-07

摘要: 为了探讨瑶山甜茶治疗2型糖尿病的作用机制,应用高脂高糖饲料喂养结合链脲佐菌素(STZ)复制2型糖尿病大鼠模型,观察大鼠血糖和胰腺组织的变化;运用系统药理学方法查找并筛选瑶山甜茶的活性成分靶点及2型糖尿病相关基因,并进行富集分析以预测其可能的信号通路,对筛选所得核心成分与核心靶点进行分子对接验证,探究其分子机制。结果表明:瑶山甜茶显著降低糖尿病模型大鼠血糖(P<0.05),同时改善其胰岛细胞损伤。筛选出瑶山甜茶干预2型糖尿病的有效成分59个,核心靶点17个。KEGG通路富集分析发现癌症信号通路、FOXO信号通路和HIF-1信号通路与2型糖尿病密切相关。分子对接表明黄芪苷、咖啡酸、槲皮素可能是瑶山甜茶治疗2型糖尿病抗血糖的物质基础,与调控MAPK1、EGFR、 SRC、AKT1、PIK3R1、PTPN11信号通路有关。

关键词: 网络药理学, 分子对接, 瑶山甜茶, 2型糖尿病, 作用机制

Abstract: To explore the mechanism of Rubus suavissmus S. Lee in the intervention of type 2 diabetes mellitus, type 2 diabetic rats were fed with high-fat and high-sugar diet combined with streptozotocin (STZ) to observe the changes of blood glucose and pancreatic tissue. The active ingredient targets and type 2 diabetes mellitus related genes of Rubus suavissmus S. Lee were searched and screened by systematic pharmacology method, and enrichment analysis was conducted to predict their possible signaling pathways. Molecular docking verification was conducted between the screened core ingredients and the core target, and the molecular mechanism was explored. The results showed that Rubus suavissmus S. Lee significantly reduced blood sugar in diabetic model rats (P<0.05), and at the same time improved its islet cell damage. KEGG pathway enrichment analysis showed that cancer signaling pathway, FOXO signaling pathway and HIF-1 signaling pathway were closely related to type 2 diabetes mellitus. The molecular docking results showed that baicalin, quercetin and caffeic acid may be the material basis for the anti-glycemic treatment of type 2 diabetes by Rubus suavissmus S. Lee, which was related to the regulation of MAPK1, EGFR, SRC, AKT1, PIK3R1 and PTPN11 signaling pathways.

Key words: network pharmacology, molecular docking, Rubus suavissmus S. Lee, type 2 diabetes mellitus, mechanism

中图分类号: 

  • R285
[1] SAEEDI P,PETERSOHN I,SALPEA P,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas,9th edition[J]. Diabetes Research and Clinical Practice,2019,157:107843.
[2]YIN B,BI Y M,FAN G J,et al. Molecular mechanism of the effect of Huanglian Jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking[J]. Journal of Diabetes Research,2020,2020:5273914.
[3]MERCADO A A,COBO-VUILLEUMIER N,MARTIN E S. Emerging therapeutic targets in regenerative medicine for the treatment of diabetes mellitus: a patent literature review[J]. Recent Patents on Regenerative Medicine,2013,3(1):56-62.
[4]李树刚. 甜茶,悬钩子属一新种[J]. 广西植物,1981(4):17-19.
[5]闫志刚,蒙淑洁,韦荣昌,等. 广西甜茶研究与应用现状[J]. 中草药,2017,48(12):2572-2578,2588.
[6]柏芸,薛淑静,周明,等. 蔷薇科甜茶加工应用研究进展[J]. 农产品加工(创新版),2010(11):52-55.
[7]郑华,苏志恒. 广西甜茶的药理学研究进展[J]. 广西医科大学学报,2015,32(1):149-151.
[8]SU Z H, LING X, JI K W,et al. 1H NMR-based urinary metabonomic study of the antidiabetic effects of Rubus suavissimus S. Lee in STZ-induced T1DM rats[J]. Journal of Chromatography B,2020,1158:122347.
[9]梁小庆,石涛,谢培,等. 甜茶素对四氧嘧啶糖尿病大鼠血糖的影响[J]. 中外医疗,2008,27(35):7-8.
[10]HOPKINS A L. Network pharmacology[J]. Nature Biotechnology,2007,25(10):1110-1111.
[11]王伟,刘星雨,尚云龙,等. 基于血清药物化学与网络药理学探究麝香通心滴丸治冠心病的机制[J]. 中成药,2020,42(10):2768-2777.
[12]毕艺鸣,殷贝,夏亚情,等. 基于网络药理学探讨四逆散治疗2型糖尿病的作用机制[J].中国实验方剂学杂志,2020,26(24):169-177.
[13]郑华,计可为,周莲清,等.甜茶素对棕榈酸诱导INS-1细胞超微结构及Cyt C易位表达的保护作用[J].中国民族民间医药,2015,24(24):16-18,26.
[14]ZHENG H,WU J X,HUANG H,et al. Metabolomics analysis of the protective effect of rubusoside on palmitic acid-induced lipotoxicity in INS-1 cells using UPLC-Q/TOF MS[J]. Molecular Omics,2019,15(3):222-232.
[15]ZHANG R X,XING B H,ZHAO J Y,et al. Astragaloside IV relieves gestational diabetes mellitus in genetic mice through reducing hepatic gluconeogenesis[J]. Canadian Journal of Physiology and Pharmacology,2020,98(7):466-472.
[16]ORSLIC'N,SIROVINA D,ODEH D,et al. Efficacy of caffeic acid on diabetes and its complications in the mouse[J]. Molecules,2021,26(11):3262.
[17]SALEM A M,RAGHEB A S,HEGAZY M G A,et al. Caffeic acid modulates miR-636 expression in diabetic nephropathy rats[J]. Indian Journal of Clinical Biochemistry,2019,34(3):296-303.
[18]EBRAHIMPOUR S,ZAKERI M,ESMAEILI A. Crosstalk between obesity,diabetes,and Alzheimer’s disease:introducing quercetin as an effective triple herbal medicine[J]. Ageing Research Reviews,2020,62:101095.
[19]LI D,JIANG C J,MEI G B,et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes[J]. Nutrients,2020,12(10):2954.
[20]YANG H,YANG T T,HENG C,et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation,oxidative stress,and lipid metabolism in db/db mice[J]. Phytotherapy Research,2019,33(12):3140-3152.
[21]HU T,SHI J J,FANG J S,et al. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice[J]. Aging (Albany NY),2020,12(8):7015-7029.
[22]徐勇,黄颂敏. MAPK家族与糖尿病并发症[J]. 国外医学:内分泌学分册,2001,21(1):8-10.
[23]李芳,曾欧,罗健,等. 硫化氢对糖尿病大鼠心肌纤维化及MAPK1/3和MMP-8表达的影响[J]. 南方医科大学学报,2015,35(4):549-552.
[24]PENG J,LI Q D,LI K Y,et al. Quercetin improves glucose and lipid metabolism of diabetic rats:involvement of Akt signaling and SIRT1[J]. Journal of Diabetes Research,2017,2017:3417306.
[25]刘桠,张翕宇,晁俊,等. 参芪复方对2型糖尿病GK大鼠胰岛β细胞功能的影响[J]. 中国实验方剂学杂志,2020,26(22):34-39.
[26]LI Y,PAN Y,CAO S R,et al. Podocyte EGFR inhibits autophagy through upregulation of rubicon in type 2 diabetic nephropathy[J]. Diabetes,2021,70(2):562-576.
[27]MYERS M G,MENDEZ R,SHI P,et al. The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling[J]. Journal of Biological Chemistry,1998,273(41):26908-26914.
[28]YOON S Y,KANG H J,AHN D,et al. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance[J]. Bioorganic Chemistry,2019,90:103087.
[29]SEPEHRI Z,KIANI Z,NASIRI A A,et al. Toll-like receptor 2 and type 2 diabetes[J]. Cellular and Molecular Biology Letters,2016,21:2.
[30]LAMPROPOULOU I T,STANGOU Μ,SARAFIDIS P,et al. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in type II diabetes mellitus[J]. Clinical Immunology,2020,215:108423.
[1] 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 丘琴,庾丽峰,陈明伟,甄丹丹,黄丽锦,甄汉深,许玉华. HPLC法测定凹叶景天茎叶中槲皮素、山奈素、异鼠李素的含量[J]. 广西师范大学学报(自然科学版), 2018, 36(2): 98 -104 .
[2] 韩会庆, 蔡广鹏, 尹昌应, 马庚, 张英佳, 陆艺. 2000年和2015年乌江中上游景观稳定性变化研究[J]. 广西师范大学学报(自然科学版), 2019, 37(1): 197 -204 .
[3] 赵东江, 马松艳, 田喜强. CoSe2/C催化剂在电催化氧还原中的应用研究进展[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 30 -43 .
[4] 阮文静, 杨启贵. 具有有限和无限孤立奇点的新四维超混沌系统的复杂动力学分析[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 173 -181 .
[5] 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198 -209 .
[6] 路凯峰, 杨溢龙, 李智. 一种基于BERT和DPCNN的Web服务分类方法[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 87 -98 .
[7] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征——以鄂东龟峰山为例[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 174 -182 .
[8] 刘宇, 周稳, 李霓. 复发事件数据在含治愈个体的半参数比率模型下的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 139 -149 .
[9] 梁家玮, 孙婉莹, 罗刘睿麒, 蒋邦平, 沈星灿. 刺激响应型纳米酶及其原位催化增强肿瘤治疗[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 300 -306 .
[10] 马军. 功能神经元建模及动力学若干问题[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 307 -323 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发