|
广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (1): 143-154.doi: 10.16088/j.issn.1001-6600.2021112401
梁林盼1,2, 凌雪3, 方姣1, 苏志恒3, 郑华1*
LIANG Linpan1,2, LING Xue3, FANG Jiao1, SU Zhiheng3, ZHENG Hua1*
摘要: 为了探讨瑶山甜茶治疗2型糖尿病的作用机制,应用高脂高糖饲料喂养结合链脲佐菌素(STZ)复制2型糖尿病大鼠模型,观察大鼠血糖和胰腺组织的变化;运用系统药理学方法查找并筛选瑶山甜茶的活性成分靶点及2型糖尿病相关基因,并进行富集分析以预测其可能的信号通路,对筛选所得核心成分与核心靶点进行分子对接验证,探究其分子机制。结果表明:瑶山甜茶显著降低糖尿病模型大鼠血糖(P<0.05),同时改善其胰岛细胞损伤。筛选出瑶山甜茶干预2型糖尿病的有效成分59个,核心靶点17个。KEGG通路富集分析发现癌症信号通路、FOXO信号通路和HIF-1信号通路与2型糖尿病密切相关。分子对接表明黄芪苷、咖啡酸、槲皮素可能是瑶山甜茶治疗2型糖尿病抗血糖的物质基础,与调控MAPK1、EGFR、 SRC、AKT1、PIK3R1、PTPN11信号通路有关。
中图分类号:
[1] SAEEDI P,PETERSOHN I,SALPEA P,et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045:results from the International Diabetes Federation Diabetes Atlas,9th edition[J]. Diabetes Research and Clinical Practice,2019,157:107843. [2]YIN B,BI Y M,FAN G J,et al. Molecular mechanism of the effect of Huanglian Jiedu decoction on type 2 diabetes mellitus based on network pharmacology and molecular docking[J]. Journal of Diabetes Research,2020,2020:5273914. [3]MERCADO A A,COBO-VUILLEUMIER N,MARTIN E S. Emerging therapeutic targets in regenerative medicine for the treatment of diabetes mellitus: a patent literature review[J]. Recent Patents on Regenerative Medicine,2013,3(1):56-62. [4]李树刚. 甜茶,悬钩子属一新种[J]. 广西植物,1981(4):17-19. [5]闫志刚,蒙淑洁,韦荣昌,等. 广西甜茶研究与应用现状[J]. 中草药,2017,48(12):2572-2578,2588. [6]柏芸,薛淑静,周明,等. 蔷薇科甜茶加工应用研究进展[J]. 农产品加工(创新版),2010(11):52-55. [7]郑华,苏志恒. 广西甜茶的药理学研究进展[J]. 广西医科大学学报,2015,32(1):149-151. [8]SU Z H, LING X, JI K W,et al. 1H NMR-based urinary metabonomic study of the antidiabetic effects of Rubus suavissimus S. Lee in STZ-induced T1DM rats[J]. Journal of Chromatography B,2020,1158:122347. [9]梁小庆,石涛,谢培,等. 甜茶素对四氧嘧啶糖尿病大鼠血糖的影响[J]. 中外医疗,2008,27(35):7-8. [10]HOPKINS A L. Network pharmacology[J]. Nature Biotechnology,2007,25(10):1110-1111. [11]王伟,刘星雨,尚云龙,等. 基于血清药物化学与网络药理学探究麝香通心滴丸治冠心病的机制[J]. 中成药,2020,42(10):2768-2777. [12]毕艺鸣,殷贝,夏亚情,等. 基于网络药理学探讨四逆散治疗2型糖尿病的作用机制[J].中国实验方剂学杂志,2020,26(24):169-177. [13]郑华,计可为,周莲清,等.甜茶素对棕榈酸诱导INS-1细胞超微结构及Cyt C易位表达的保护作用[J].中国民族民间医药,2015,24(24):16-18,26. [14]ZHENG H,WU J X,HUANG H,et al. Metabolomics analysis of the protective effect of rubusoside on palmitic acid-induced lipotoxicity in INS-1 cells using UPLC-Q/TOF MS[J]. Molecular Omics,2019,15(3):222-232. [15]ZHANG R X,XING B H,ZHAO J Y,et al. Astragaloside IV relieves gestational diabetes mellitus in genetic mice through reducing hepatic gluconeogenesis[J]. Canadian Journal of Physiology and Pharmacology,2020,98(7):466-472. [16]ORSLIC'N,SIROVINA D,ODEH D,et al. Efficacy of caffeic acid on diabetes and its complications in the mouse[J]. Molecules,2021,26(11):3262. [17]SALEM A M,RAGHEB A S,HEGAZY M G A,et al. Caffeic acid modulates miR-636 expression in diabetic nephropathy rats[J]. Indian Journal of Clinical Biochemistry,2019,34(3):296-303. [18]EBRAHIMPOUR S,ZAKERI M,ESMAEILI A. Crosstalk between obesity,diabetes,and Alzheimer’s disease:introducing quercetin as an effective triple herbal medicine[J]. Ageing Research Reviews,2020,62:101095. [19]LI D,JIANG C J,MEI G B,et al. Quercetin alleviates ferroptosis of pancreatic β cells in type 2 diabetes[J]. Nutrients,2020,12(10):2954. [20]YANG H,YANG T T,HENG C,et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation,oxidative stress,and lipid metabolism in db/db mice[J]. Phytotherapy Research,2019,33(12):3140-3152. [21]HU T,SHI J J,FANG J S,et al. Quercetin ameliorates diabetic encephalopathy through SIRT1/ER stress pathway in db/db mice[J]. Aging (Albany NY),2020,12(8):7015-7029. [22]徐勇,黄颂敏. MAPK家族与糖尿病并发症[J]. 国外医学:内分泌学分册,2001,21(1):8-10. [23]李芳,曾欧,罗健,等. 硫化氢对糖尿病大鼠心肌纤维化及MAPK1/3和MMP-8表达的影响[J]. 南方医科大学学报,2015,35(4):549-552. [24]PENG J,LI Q D,LI K Y,et al. Quercetin improves glucose and lipid metabolism of diabetic rats:involvement of Akt signaling and SIRT1[J]. Journal of Diabetes Research,2017,2017:3417306. [25]刘桠,张翕宇,晁俊,等. 参芪复方对2型糖尿病GK大鼠胰岛β细胞功能的影响[J]. 中国实验方剂学杂志,2020,26(22):34-39. [26]LI Y,PAN Y,CAO S R,et al. Podocyte EGFR inhibits autophagy through upregulation of rubicon in type 2 diabetic nephropathy[J]. Diabetes,2021,70(2):562-576. [27]MYERS M G,MENDEZ R,SHI P,et al. The COOH-terminal tyrosine phosphorylation sites on IRS-1 bind SHP-2 and negatively regulate insulin signaling[J]. Journal of Biological Chemistry,1998,273(41):26908-26914. [28]YOON S Y,KANG H J,AHN D,et al. Identification of chebulinic acid as a dual targeting inhibitor of protein tyrosine phosphatases relevant to insulin resistance[J]. Bioorganic Chemistry,2019,90:103087. [29]SEPEHRI Z,KIANI Z,NASIRI A A,et al. Toll-like receptor 2 and type 2 diabetes[J]. Cellular and Molecular Biology Letters,2016,21:2. [30]LAMPROPOULOU I T,STANGOU Μ,SARAFIDIS P,et al. TNF-α pathway and T-cell immunity are activated early during the development of diabetic nephropathy in type II diabetes mellitus[J]. Clinical Immunology,2020,215:108423. |
[1] | 蒋向辉, 谭荣, 杨永平, 肖清淙. 十大功劳甘草汤治疗肝炎的网络药理学研究[J]. 广西师范大学学报(自然科学版), 2021, 39(5): 198-209. |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |