广西师范大学学报(自然科学版) ›› 2023, Vol. 41 ›› Issue (4): 231-242.doi: 10.16088/j.issn.1001-6600.2022102403

• 研究论文 • 上一篇    

不同水分条件下施用调理剂对土壤铅镉的钝化效应

王琳清1,2,3, 鄢韬4, 陈永坚4, 李富荣2*, 王旭2, 李文英3, 杜瑞英2, 杨秀丽2   

  1. 1.仲恺农业工程学院资源与环境学院,广东广州 510225;
    2.广东省农业科学院农业质量标准与监测技术研究所,广东广州 510640;
    3.广东省农业科学院农业资源与环境研究所,广东广州 510640;
    4.广东农科监测科技有限公司,广东广州 510640
  • 收稿日期:2022-10-24 修回日期:2022-12-07 出版日期:2023-07-25 发布日期:2023-09-06
  • 通讯作者: 李富荣(1984—),女,湖北仙桃人,广东省农业科学院副研究员,博士。E-mail:lifr0314@163.com
  • 基金资助:
    国家重点研发计划食品安全关键技术研发专项(2019YFC1605602);广州市基础研究计划基础与应用基础研究项目(202102080370);广西创新驱动发展专项(桂科AA20161002-1);粤桂科技合作基础与应用基础研究联合基金(2021JJYGD150048);清远市科技计划项目(2021SJXM034)

Passivation Effect of Soil Conditioner on Soil Lead and Cadmium under Different Water Conditions

WANG Linqing1,2,3, YAN Tao4, CHEN Yongjian4, LI Furong2*, WANG Xu2, LI Wenying3, DU Ruiying2, YANG Xiuli2   

  1. 1. College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou Guangdong 510225, China;
    2. Institute of Quality Standard and Monitoring Technology for Agro-products, Guangdong Academy of Agricultural Sciences, Guangzhou Guangdong 501640, China;
    3. Institute of Agricultural Resources and Environment, Guangdong Academy of Agricultural Sciences, Guangzhou Guangdong 510640, China;
    4. Guangdong Agricultural Monitoring Technology Co., Ltd., Guangzhou Guangdong 510640, China
  • Received:2022-10-24 Revised:2022-12-07 Online:2023-07-25 Published:2023-09-06

摘要: 为结合农艺措施和土壤调理剂改善农田土壤重金属污染状况并提高耕地安全利用率,本研究以南方典型菜地土壤为研究对象,通过30 d和60 d的土壤培养实验,研究不同水分条件(75%土壤饱和持水量、淹水)下施用土壤调理剂(生物炭和果胶)对土壤理化特性和重金属铅镉的钝化效应差异。研究发现,淹水条件较75%饱和持水量条件下的pH值更高而重金属有效态含量更低;在2种水分条件下施用生物炭和果胶均能提高土壤pH值和有机质含量,但对土壤碱解氮、有效磷、速效钾的影响因水分条件不同而表现不同。75%饱和持水量条件下,施用生物炭和果胶均能明显降低土壤有效态镉含量,且其含量随2种调理剂施用量增加而降低。而淹水条件下,不同生物炭施用量下配施果胶对土壤有效态铅含量影响规律不一致,但土壤培养60 d比30 d的钝化效果更好。多因素方差分析结果显示,土壤调理剂种类较培养时间和水分等因素对土壤理化性质和重金属铅镉有效态影响更明显。因此,面对耕地资源日益紧缺和改善耕地土壤质量的需求更加迫切的现状,在中轻度重金属污染农田土壤中,通过合适的水分管理和不同栽培模式的调整,并结合适宜的土壤调理剂有望降低土壤重金属的有效性,实现耕地的安全利用。

关键词: 重金属, 土壤调理剂, 水分管理, 生物炭, 钝化效应

Abstract: To ameliorate heavy metal pollution and improve safe utilization rate of farmland by combining agricultural measures and soil conditioners, this research explored the effects of soil conditioners (biochar and pectin) on soil physical and chemical properties and the passivation of heavy metals Pb and Cd under different water conditions (75% soil saturation moisture capacity and waterlogged condition). The typical vegetable soil in South China was chosen as the research subject with a soil culture experiment for 30 and 60 days. The results showed that the pH values were higher and the available heavy metal contents were lower under waterlogged condition than under 75% soil saturation moisture capacity. The application of biochar and pectin could increase soil pH value and organic matter contents under both the two water conditions, while the effects on soil alkali hydrolyzable nitrogen, available phosphorus and available potassium contents were different due to different water conditions. Under 75% soil saturation moisture capacity, the application of biochar and pectin could significantly reduce the available Cd contents in soil, which were lower with the application amount of the two conditioners increasing. However, under the waterlogged condition, the effect of pectin on soil available lead content with different biochar application amounts was not consistent, but the passivation effect of soil culture for 60 days was better than that for 30 days. The multivariate analysis of variance indicated that, in general, the types and formulations of soil conditioners had greater impact on the soil physical and chemical properties and the available heavy metal contents than other factors, such as soil incubation time and water conditions. Therefore, for the increasing shortage of cultivated land resources and the more urgent need to improve the quality of cultivated land soil, it is an effective way to reduce the heavy metal availability in the moderately contaminated farmland soil and realize the full and safe utilization of cultivated land by appropriate water management, adjustment of different cultivation modes and appropriate soil conditioners.

Key words: heavy metal, soil conditioner, water management, biochar, passivation effect

中图分类号:  X53; Q89

[1] WU J H, SONG Q M, ZHOU J Y, et al. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa I. cadmium accumulation: influential factors and prediction model[J]. Ecotoxicology and Environmental Safety, 2021, 208: 111420. DOI: 10.1016/j.ecoenv.2020.111420.
[2] HAN R, DAI H P, SKUZA L, et al. Comparative study on different organic acids for promoting Solanum nigrum L. hyperaccumulation of Cd and Pb from the contaminated soil[J]. Chemosphere, 2021, 278: 130446. DOI: 10.1016/J.chemosphere.2021.130446.
[3] 彭丽梅, 赵理, 周悟, 等. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129. DOI: 10.16088/j.issn.1001-6600.2020.05.015.
[4] LI F R, WEN D, WANG F H, et al. Derivation of Soil Pb/Cd/As thresholds for safety of vegetable planting: a case study for pakchoi in Guangdong Province, China[J]. Journal of Integrative Agriculture, 2019, 18(1): 179-189. DOI: 10.1016/S2095-3119(18)61975-6.
[5] WEI L, HUANG Y F, HUANG L X, et al. Combined biochar and soda residues increases maize yields and decreases grain Cd/Pb in a highly Cd/Pb-polluted acid Udults soil[J]. Agriculture, Ecosystems & Environment, 2021, 306: 107198. DOI: 10.1016/j.agee.2020.107198.
[6] NAWAB J, KHAN S, AAMIR M, et al. Organic amendments impact the availability of heavy metal (loid)s in mine-impacted soil and their phytoremediation by Penisitum americanum and Sorghum bicolor[J]. Environmental Science and Pollution Research, 2016, 23(3): 2381-2390. DOI: 10.1007/s11356-015-5458-7.
[7] 周利军, 武琳, 林小兵, 等. 土壤调理剂对镉污染稻田修复效果[J]. 环境科学, 2019, 40(11): 5098-5106. DOI: 10.13227/j.hjkx.201905053.
[8] BABLA M, KATWAL U, YONG M T, et al. Value-added products as soil conditioners for sustainable agriculture[J]. Resources, Conservation and Recycling, 2022, 178: 106079. DOI: 10.1016/j.resconrec.2021.106079.
[9] HUI D F. Effects of biochar application on soil properties, plant biomass production, and soil greenhouse gas emissions: a mini-review[J]. Agricultural Sciences, 2021, 12(3): 213-236. DOI: 10.4236/as.2021.123014.
[10] 梁佳怡, 王泳森, 段敏, 等. 生物质炭对土壤有效态镉及植物镉吸收影响的整合分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 1-21. DOI: 10.16088/j.issn.1001-6600.2021030502.
[11] HANNAN F, ISLAM F, HUANG Q, et al. Interactive effects of biochar and mussel shell activated concoctions on immobilization of nickel and their amelioration on the growth of rapeseed in contaminated aged soil[J]. Chemosphere, 2021, 282: 130897. DOI: 10.1016/j.chemosphere.2021.130897.
[12] MATA Y N, BLÁZQUEZ M L, BALLESTER A, et al. Sugar-beet pulp pectin gels as biosorbent for heavy metals: preparation and determination of biosorption and desorption characteristics[J]. Chemical Engineering Journal, 2009, 150(2/3): 289-301. DOI: 10.1016/j.cej.2009.01.001.
[13] WANG R H, ZHU X F, QIAN W, et al. Pectin adsorption on amorphous Fe/Al hydroxides and its effect on surface charge properties and Cu(Ⅱ) adsorption[J]. Journal of Soils and Sediments, 2017, 17(10): 2481-2489. DOI: 10.1007/s11368-017-1702-8.
[14] GUO M X, TONG H, CAI D Q, et al. Effectof wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles[J]. Journal of Hazardous Materials, 2022, 436: 129119. DOI: 10.1016/j.jhazmat.2022.129119.
[15] 李富荣, 李敏, 朱娜, 等. 水作和旱作施用改良剂对蕹菜-土壤系统中铅镉生物有效性的影响差异[J]. 农业环境科学学报, 2017, 36(8): 1477-1483. DOI: 10.11654/jaes.2017-0021.
[16] CANG L, XING J F, LIU C, et al. Effects of different water management strategies on the stability of cadmium and copper immobilization by biochar in rice-wheat rotation system[J]. Ecotoxicology and Environmental Safety, 2020, 202: 110887. DOI: 10.1016/j.ecoenv.2020.110887.
[17] 赵洁, 李富荣, 文典, 等. 不同作物栽培模式下施用改良剂对重金属铅、镉的影响[J]. 南方农业学报, 2016, 47(7): 1110-1116. DOI: 10.3969/j.issn.2095-1191.2016.07.1110.
[18] 刘源, 崔二苹, 李中阳, 等. 养殖废水灌溉下施用生物质炭和果胶对土壤养分和重金属迁移的影响[J]. 植物营养与肥料学报, 2018, 24(2): 424-434. DOI: 10.11674/zwyf.17250.
[19] DUQUE-ACEVEDO M, BELMONTE-UREÑA L J, CORTÉS-GARCÍA F J, et al. Agricultural waste: review of the evolution, approaches and perspectives on alternative uses[J]. Global Ecology and Conservation, 2020, 22: e00902. DOI: 10.1016/j.gecco.2020.e00902.
[20] 王艳红, 李盟军, 唐明灯, 等. 水作和旱作对叶菜吸收镉的影响差异研究[J]. 生态环境学报, 2012, 21(4): 770-774. DOI: 10.16258/j.cnki.1674-5906.2012.04.007.
[21] LI F R, WANG X, WANG F H, et al. Arisk-based approach for the safety analysis of eight trace elements in chinese flowering cabbage(Brassica parachinensis L.) in China[J]. Journal of the Science of Food and Agriculture, 2021, 101(13): 5583-5590. DOI: 10.1002/jsfa.11209.
[22] REN J, ZHANG Z, WANG M, et al. Phosphate-induced differences in stabilization efficiency for soils contaminated with Lead, Zinc, and Cadmium[J]. Frontiers of Environmental Science & Engineering, 2018, 12(2): 1-9. DOI: 10.1001/s11783-018-1006-2.
[23] REES F, SIMONNOT M O, MOREL J L. Short-term effects of biochar on soil heavy metal mobility are controlled by intra-particle diffusion and soil pH increase[J]. European Journal of Soil Science, 2014, 65(1):149-161. DOI: 10.1111/ejss.12107.
[24] YUAN J H, XU R K. The amelioration effects of low temperature biochar generated from nine crop residues on an acidic ultisol[J]. Soil Use and Management, 2011, 27(1): 110-115. DOI: 10.1111/j.1475-2743.2010.00317.x.
[25] LI J, YANG Z L, DING T, et al. The role of surface functional groups of pectin and pectin-based materials on the adsorption of heavy metal ions and dyes[J]. Carbohydrate Polymers, 2022, 276: 118789. DOI: 10.1016/j.carbpol.2021.118789.
[26] SUN L N, CHEN S, CHAO L, et al. Effects of flooding on changes in Eh, pH and speciation of cadmium and lead in contaminated soil[J]. Bulletin of Environmental Contamination and Toxicology, 2007, 79(5): 514-518. DOI: 10.1007/s00128-007-9274-8.
[27] 朱丹妹, 刘岩, 张丽, 等. 不同类型土壤淹水对pH、Eh、Fe及有效态Cd含量的影响[J]. 农业环境科学学报, 2017, 36(8): 1508-1517. DOI: 10.11654/jaes.2016-1491.
[28] 汤家庆, 张绪, 黄国勇, 等. 水分条件对生物炭钝化水稻土铅镉复合污染的影响[J]. 环境科学, 2021, 42(3):1185-1190. DOI: 10.13227/j.hjkx.202010127.
[29] 罗小丽, 鞠琳, 姚爱军, 等. 水分管理、铁硅材料与生物炭对不同水稻品种吸收镉的影响及其机制[J]. 农业环境科学学报, 2019, 38(7): 1506-1513. DOI: 10.11654/jaes.2018-1319.
[30] CONNELL W E, PATRICK W H, Jr. Sulfate reduction in soil: effects of redox potential and pH[J]. Science, 1968, 159(3810): 86-87. DOI: 10.1126/science.159.3810.86.
[31] 刘娟, 张乃明, 袁启慧. 不同钝化剂对铅镉复合污染土壤钝化效果及影响因素研究[J].生态环境学报, 2021, 30(8): 1732-1741. DOI: 10.16258/j.cnki.1674-5906.2021.08.020.
[32] 李衍亮, 黄玉芬, 魏岚, 等. 施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J]. 农业环境科学学报, 2017, 36(11): 2233-2239. DOI: 10.11654/jaes.2017-0522.
[33] QIU Z, TANG J W, CHEN J H, et al. Remediation of cadmium-contaminated soil with biochar simultaneously improves biochar's recalcitrance[J]. Environmental Pollution, 2020, 256: 113436. DOI: 10.1016/j.envpol.2019.113436.
[34] ALABOUDI K A, AHMED B, BRODIE G. Effect of biochar on Pb, Cd and Cr availability and maize growth in artificial contaminated soil[J]. Annals of Agricultural Sciences, 2019, 64(1): 95-102. DOI: 10.1016/j.aoas.2019.04.002.
[35] ABBAS T, RIZWAN M, ALI S, et al. Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination[J]. Ecotoxicology and Environmental Safety, 2017, 140: 37-47. DOI: 10.1016/j.ecoenv.2017.02.028.
[36] WANG R S, LIANG R H, DAI T T, et al. Pectin-based adsorbents for heavy metal ions: a review[J]. Trends in Food Science & Technology, 2019, 91: 319-329. DOI: 10.1016/j.tifs.2019.07.033.
[37] AMOS R A, MOHNEN D. Critical review of plant cell wall matrix polysaccharide glycosyltransferase activities verified by heterologous protein expression[J]. Frontiers in Plant Science, 2019, 10: 915. DOI: 10.3389/fpls.2019.00915.
[38] WANG R H, ZHU X F, QIAN W, et al. Adsorption of Cd(II) by two variable-charge soils in the presence of pectin[J]. Environmental Science and Pollution Research, 2016, 23(13): 12976-12982. DOI: 10.1007/s11356-016-6465-z.
[1] 赵珂艺, 张宁宁, 薛洁怡, 李广娈, 李艺, 于方明, 刘可慧. 重金属超富集植物研究CiteSpace可视化分析[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 191-209.
[2] 邓华, 张俊渝, 黄瑞, 王威, 胡乐宁. 竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 131-142.
[3] 彭丽梅, 赵理, 周悟, 胡月明. 广州市从化区耕地土壤重金属风险评价[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 118-129.
[4] 徐婷婷, 余秋平, 漆培艺, 刘可慧, 李艺, 蒋永荣, 于方明. 不同淋洗剂对矿区土壤重金属解吸的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 188-193.
[5] 郑海霞, 王月, 陈芬, 勾朝阳, 郑庆荣. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版), 2018, 36(4): 99-107.
[6] 冯修, 马楠楠, 职红涛, 韩双乔, 张翔. 重金属捕集剂UDTC对低浓度镉废水的处理研究[J]. 广西师范大学学报(自然科学版), 2018, 36(3): 63-67.
[7] 陈春强,邓 华,陈小梅. 广西3个锰矿恢复区农作物重金属健康风险评价[J]. 广西师范大学学报(自然科学版), 2017, 35(4): 127-135.
[8] 陈春强, 邓华, 黄芳芳. 广西桂平锰矿区土壤重金属含量及形态分析[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 108-114.
[9] 张俊, 黎道洪, 杜典松. 贵州龙井洞和白龙洞裸灶螽对重金属的富集[J]. 广西师范大学学报(自然科学版), 2012, 30(4): 104-109.
[10] 唐宇庭, 黄佳玉, 王维生, 张超兰. 低分子有机酸对油菜吸收Cd和Zn的影响[J]. 广西师范大学学报(自然科学版), 2012, 30(2): 127-131.
[11] 邓华, 许丹丹, 李明顺, 李金城. 不同消解方法分析土壤中重金属含量的比较[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 80-83.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 徐久成, 李晓艳, 李双群, 张灵均. 基于相容粒的多层次纹理特征图像检索方法[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 186 -187 .
[2] 白德发, 徐欣, 王国长. 函数型数据广义线性模型和分类问题综述[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 15 -29 .
[3] 曾庆樊, 秦永松, 黎玉芳. 一类空间面板数据模型的经验似然推断[J]. 广西师范大学学报(自然科学版), 2022, 40(1): 30 -42 .
[4] 张喜龙, 韩萌, 陈志强, 武红鑫, 李慕航. 面向复杂数据流的集成分类综述[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 1 -21 .
[5] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22 -34 .
[6] 王党树, 仪家安, 董振, 杨亚强, 邓翾. 单周期控制的带纹波抑制单元无桥Boost PFC变换器研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 47 -57 .
[7] 喻思婷, 彭靖静, 彭振赟. 矩阵方程的秩约束最小二乘对称半正定解及其最佳逼近[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 136 -144 .
[8] 覃城阜, 莫芬梅. C3-和C4-临界连通图的结构[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 145 -153 .
[9] 阴玉栋, 柯善喆, 黄家艳, 邓梦湘, 刘观艳, 程克光. 1,3-二溴丙烷与醇羧酸和胺一锅法生成烯丙基化合物[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 154 -161 .
[10] 杜丽波, 李金玉, 张晓, 李永红, 潘卫东. 毛红椿皮的化学成分及生物活性研究[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 162 -172 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发