2025年04月08日 星期二

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 174-184.doi: 10.16088/j.issn.1001-6600.2024050803

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

套种马铃薯对罗汉果农田土壤酶活性及细菌多样性的影响

刘学惠1,2, 谢雅淇1,2, 曾奕诚1,2, 胡乐宁1,2*   

  1. 1.广西生态脆弱区环境过程与修复重点实验室(广西师范大学),广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006
  • 收稿日期:2024-05-08 修回日期:2024-06-17 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 胡乐宁(1980—),女,河北保定人,广西师范大学副教授,博士。E-mail:hulening@gxnu.edu.cn
  • 基金资助:
    广西重点研发计划(桂科 AB23026046);广西自然科学基金(2023GXNSFAA026484);桂林罗汉果生态高值产业模式研发与示范(RZ2200002640)

Effects of Interplanting Potatoes on Soil Enzyme Activity and Bacterialdiversity in Siraitia grosvenorii (Luo Han Guo)

LIU Xuehui1,2, XIE Yaqi1,2, ZENG Yicheng1,2, HU Lening1,2*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2024-05-08 Revised:2024-06-17 Online:2025-01-05 Published:2025-02-07

摘要: 套种和施加外源有机物能够有效缓解罗汉果连作障碍,提高土壤肥力。本文探索罗汉果单作及套种马铃薯种植模式下,水稻秸秆及其生物炭还田对罗汉果农田土壤酶活性及细菌多样性的影响。设置罗汉果单作、套种马铃薯、套种马铃薯+水稻秸秆还田、套种马铃薯+水稻秸秆生物炭还田和套种马铃薯+水稻秸秆及其生物炭混施还田5种处理进行为期10个月的大田试验,分析不同处理对农田土壤酶活性及细菌多样性的影响。结果表明,与单作相比,套种马铃薯提高了土壤脲酶、蔗糖酶和过氧化氢酶活性,降低了土壤磷酸酶活性,降低0.75 mg·g-1·d-1。套种马铃薯土壤细菌的Chao1指数、ACE指数、Shannon指数分别增加624.56、643.5、0.47,但降低了变形菌门和放线菌门的相对丰度。套种模式下水稻秸秆及其生物炭还田提高了土壤脲酶、磷酸酶和蔗糖酶活性,降低了土壤过氧化氢酶活性,降低幅度为30.89%~69.29%。水稻秸秆及其生物炭混施还田增加了土壤细菌的Chao1指数、ACE指数、Shannon指数,分别增加309.23、465.20、0.46,同时增加了变形菌门的相对丰度。综上,与单作相比,套种马铃薯通过提高土壤脲酶、蔗糖酶和过氧化氢酶活性,促进了土壤碳组分的转化;套种模式下,水稻秸秆及其生物炭混施还田提高了土壤脲酶、磷酸酶和蔗糖酶活性,有助于提高土壤肥力,促进土壤健康。

关键词: 土壤酶活性, 土壤细菌多样性, 罗汉果农田, 马铃薯套种, 水稻秸秆/生物炭, 还田

Abstract: Soil continuous cropping obstacle in Siraitia grosvenorii (Luo Han Guo) farmland can be effectively alleviated, meanwhile, soil fertility also can be improved by interplanting with potatoes and application with organic matter. In this study, the effects of rice straw and its biochar on soil enzyme activity and bacterial diversity in Siraitia grosvenorii farmland were analyzed. Firstly, five treatments, ie., Siraitia grosvenorii only, Siraitia grosvenorii interplanting with potato, Siraitia grosvenorii interplanting with potato+rice straw, Siraitia grosvenorii interplanting with potato+rice straw biochar, and Siraitia grosvenorii interplanting with potato+rice straw and biochar were set up. And the effects of different treatments on soil enzyme activities and bacterial diversity are analyzed. The results showed that the activities of soil urease, sucrase, and catalase activities all could be improved by interplanting with potatoes in Siraitia grosvenorii farmland. However, in comparsion with Siraitia grosvenorii monoculture, soil phosphatase activity only was decreased with 0.75 mg·g-1·d-1. Meanwhile, the diversity and richness indexes, such as Chao1, ACE and Shannon were all increased by intercropping with potatoes 624.56, 643.5, and 0.47, respectively, but at the phylum level, the relative abundance of Proteobacteria and Actinobacteria all decreased in Siraitia grosvenorii interplanting with potato treatment. Under the intercropping mode, rice straw and its biochar returning to field increased the activities of soil urease, phosphatase, and sucrase, while decreased the activities of soil catalase by 30.89% to 69.29%. Furthermore, the bacterial diversity and richness, such as the index of Chao1, ACE, and Shannon were all improved by Siraitia grosvenorii interplanting with potato+rice straw, Siraitia grosvenorii interplanting with potato+rice straw biochar, and Siraitia grosvenorii interplanting with potato+rice straw and biochar treatment with 309.23, 465.20, and 0.46, respectively. Meanwhile, in comparison with the monoculture, the relative abundances of Proteobacteria in other four treatment were all increased. In conclusion, compared with monoculture, interplanting potato promoted the conversion of soil carbon components by increasing the activities of soil urease, sucrase, and catalase; under the interplanting mode, the urease, phosphatase, and sucrase activities of soil were increased by the mixed application of rice straw and its biochar, which helped to improve soil fertility and promote soil health.

Key words: soil enzyme activity, soil bacterial diversity, Siraitia grosvenorii farmlands, potato interplanting, rice straw/biochar, return to field

中图分类号:  S-3

[1] 陈燕蓉,张娜,陆艳,等.基于文献分析的罗汉果产业技术研究进展[J].广西科学,2024,31(1):9-16. DOI: 10.13656/j.cnki.gxkx.20240417.002.
[2] LI J, ZHOU L J, LIN W F. Calla lily intercropping in rubber tree plantations changes the nutrient content, microbial abundance, and enzyme activity of both rhizosphere and non-rhizosphere soil and calla lily growth[J]. Industrial Crops and Products, 2019, 132: 344-351. DOI: 10.1016/j.indcrop.2019.02.045.
[3] LIU C G, JIN Y Q, HU Y N, et al. Drivers of soil bacterial community structure and diversity in tropical agroforestry systems[J]. Agriculture, Ecosystems & Environment, 2019, 278: 24-34. DOI: 10.1016/j.agee.2019.03.015.
[4] 包松明.对两种马铃薯栽培基质中微生物群落结构和物种多样性的研究[D].兰州:兰州交通大学,2023. DOI: 10.27205/d.cnki.gltec.2023.000466.
[5] 芦美,赵吉霞,李永梅,等.玉米间作马铃薯对根际土壤酶活性及团聚体稳定性的影响[J].水土保持研究,2023,30(6):123-132. DOI: 10.13869/j.cnki.rswc.2023.06.008.
[6] 王娜,陆姗姗,马琨,等.宁夏南部山区马铃薯不同间作模式对根际土壤细菌多样性的影响[J].干旱区资源与环境,2016,30(12):193-198. DOI: 10.13448/j.cnki.jalre.2016.405.
[7] 覃潇敏,郑毅,汤利,等.玉米与马铃薯间作对根际微生物群落结构和多样性的影响[J].作物学报,2015,41(6):919-928. DOI: 10.3724/SP.J.1006.2015.00919.
[8] 张晓庆,王梓凡,参木友,等.中国农作物秸秆产量及综合利用现状分析[J].中国农业大学学报,2021,26(9):30-41. DOI: 10.11841/j.issn.1007-4333.2021.09.04.
[9] 高文慧,郭宗昊,高科,等.生物炭与炭基肥对大豆根际土壤细菌和真菌群落的影响[J].生态环境学报,2021,30(1):205-212. DOI: 10.16258/j.cnki.1674-5906.2021.01.024.
[10] 丁苏雅,马姜明,覃云斌,等.生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J].广西师范大学学报(自然科学版),2024,42(1):180-190. DOI: 10.16088/j.issn.1001-6600.2023020701.
[11] 靳玉婷,李先藩,蔡影,等.秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响[J].环境科学,2021,42(8):3985-3996. DOI: 10.13227/j.hjkx.202012077.
[12] YANG S H, SUN X, DING J, et al. Effect of biochar addition on CO2 exchange in paddy fields under water-saving irrigation in Southeast China[J]. Journal of Environmental Management, 2020, 271: 111029. DOI: 10.1016/j.jenvman.2020.111029.
[13] 邬石根.秸秆还田对酸性水稻土培肥增产、土壤微生物生物量及酶活性的影响研究[J].土壤与作物,2017,6(4):270-276. DOI: 10.11689/j.issn.2095-2961.2017.04.005.
[14] 王理德,王方琳,郭春秀,等.土壤酶学硏究进展[J].土壤,2016,48(1):12-21. DOI: 10.13758/j.cnki.tr.2016.01.002.
[15] CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33-44. DOI: 10.1016/j.apsoil.2013.05.003.
[16] WANG H F, LIU H L, YANG T H, et al. Mechanisms underlying the succession of plant rhizosphere microbial community structure and function in an alpine open-pit coal mining disturbance zone[J]. Journal of Environmental Management, 2023, 325(Pt A): 116571. DOI: 10.1016/j.jenvman.2022.116571.
[17] 陈芬,余高,孙约兵,等.汞矿区周边农田土壤微生物群落结构特征及其环境驱动因子[J].环境科学,2022,43(8):4342-4352. DOI: 10.13227/j.hjkx.202111245.
[18] 刘佩雯,覃云斌,莫慧婷,等.凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J].广西师范大学学报(自然科学版),2023,41(6):179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[19] 鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版社,2000.
[20] 姚忠凯.玉米秸秆和生物炭添加对颗粒态、矿物结合态有机碳激发效应的影响[D].重庆:重庆三峡学院,2023. DOI: 10.27883/d.cnki.gcqsx.2023.000041.
[21] 陈桂华,范芳,林芷君.三氯化六氨合钴浸提-分光光度法测定土壤阳离子交换量[J].理化检验:化学分册,2019,55(12):1448-1451. DOI: 10.11973/lhjy-hx201912016.
[22] HU L N, LI S L, LI K, et al. Effects of two types of straw biochar on the mineralization ofsoil organic carbon in farmland[J]. Sustainability, 2020, 12(24): 10586. DOI: 10.3390/SU122410586.
[23] 关松荫.土壤酶及其研究法[M].北京:农业出版社,1986.
[24] CHAO A, SHEN T J. Nonparametric prediction in species sampling[J]. Journal of Agricultural, Biological, and Environmental Statistics, 2004, 9(3): 253-269. DOI: 10.1198/108571104X3262.
[25] 史晓巍.甘肃引黄灌区枸杞豆科牧草间作节水增产效应研究[D].兰州:甘肃农业大学,2018.
[26] (HAN) WENG Z, VAN ZWIETEN L, SINGH B P, et al. Biochar built soil carbon over a decade by stabilizing rhizodeposits[J]. Nature Climate Change, 2017, 7(5): 371-376. DOI: 10.1038/nclimate3276.
[27] 石媛媛,赵隽宇,宋贤冲,等.广西人工林不同类型土壤肥力质量评价及环境驱动因子分析[J].广西师范大学学报(自然科学版),2023,41(6):192-201. DOI: 10.16088/j.issn.1001-6600.2022112301.
[28] 刘晓燕,梁强,庞天,等.甘蔗套种马铃薯机械化栽培对土壤微生物多样性及甘蔗养分吸收的影响[J].南方农业学报,2021,52(2):297-306. DOI: 10.3969/j.issn.2095-1191.2021.02.004.
[29] 王顶,李欢,伊文博,等.马铃薯间作对土壤微生物代谢功能多样性的促进效应及其氮素调控作用[J].中国生态农业学报(中英文),2022,30(7):1164-1173. DOI: 10.12357/cjea.20210604.
[30] XIA H, RIAZ M, LIU B, et al. Over two years study: peanut biochar promoted potassium availability by mediating the relationship between bacterial community and soil properties[J]. Applied Soil Ecology, 2022, 176: 104485. DOI: 10.1016/j.apsoil.2022.104485.
[31] 姜敏,汪霄,张润花,等.生物炭对土壤不同形态钾素含量的影响及机制初探[J].土壤通报,2016,47(6):1433-1441. DOI: 10.19336/j.cnki.trtb.2016.06.23.
[32] 文登鸿.秸秆生物炭施用对植烟土壤碳、氮形态及相关酶活性的影响研究[D].成都:四川农业大学,2017.
[33] CHEN Y L, XIN L, LIU J T, et al. Changes in bacterial community of soil induced by long-term straw returning[J]. Scientia Agricola, 2017, 74(5): 349-356. DOI: 10.1590/1678-992X-2016-0025.
[34] WROBEL-TOBISZEWSKA A, BOERSMA M, SARGISON J, et al. Nutrient changes in potting mix and Eucalyptus nitens leaf tissue under macadamia biochar amendments[J]. Journal of Forestry Research, 2018, 29(2): 383-393. DOI: 10.1007/s11676-017-0437-0.
[35] TIAN J H, KUANG X Z, TANG M T, et al. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition[J]. Science of the Total Environment, 2021, 779: 146556. DOI: 10.1016/j.scitotenv.2021.146556.
[36] KAHURA M W, MIN H, KIM M S, et al. Assessing phosphorus availability in a high pH, biochar amended soil under inorganic and organic fertilization[J]. Ecology and Resilient Infrastructure, 2018, 5(1): 11-18. DOI: 10.17820/eri.2018.5.1.011.
[37] 宁川川,王建武,蔡昆争.有机肥对土壤肥力和土壤环境质量的影响研究进展[J].生态环境学报,2016,25(1):175-181. DOI: 10.16258/j.cnki.1674-5906.2016.01.026.
[38] ZHOU M Q, SUN C L, DAI B, et al. Intercropping system modulated soil-microbe interactions that enhanced the growth and quality of flue-cured tobacco by improving rhizospheric soil nutrients, microbial structure, and enzymatic activities[J]. Frontiers in Plant Science, 2023, 14: 1233464. DOI: 10.3389/fpls.2023.1233464.
[39] VEPSÄLÄINEN M, KUKKONEN S, VESTBERG M, et al. Application of soil enzyme activity test kit in a field experiment[J]. Soil Biology and Biochemistry, 2001, 33(12/13): 1665-1672. DOI: 10.1016/S0038-0717(01)00087-6.
[40] 尚杰,耿增超,陈心想,等.生物炭对土壤酶活性和糜子产量的影响[J].干旱地区农业研究,2015,33(2):146-151,158. DOI: 10.16302/j.cnki.1000-7601.2015.02.024.
[41] 方舰,张瑞玲,张子来.莲杆炭对土壤酶活性的影响[J].价值工程,2020,39(23):214-216. DOI: 10.14018/j.cnki.cn13-1085/n.2020.23.092.
[42] 张莉,任建新,韩国君,等.尿素混合生物质炭穴施对土壤氮含量及酶活性的影响[J].农业环境科学学报,2020,39(9):1974-1982. DOI: 10.11654/jaes.2020-0135.
[43] 包建平,袁根生,董方圆,等.生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J].土壤学报,2020,57(3):721-729. DOI: 10.11766/trxb201812150623.
[44] 伍玉鹏,彭其安,SHAABAN M,等.秸秆还田对土壤微生物影响的研究进展[J].中国农学通报,2014,30(29):175-183.
[45] OLESZCZUK P, JOSKO I, FUTA B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214/215: 10-18. DOI: 10.1016/j.geoderma.2013.10.010.
[46] PIETIKÄINEN J, KIIKKILÄ O, FRITZE H. Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus[J]. Oikos, 2000, 89(2): 231-242. DOI: 10.1034/j.1600-0706.2000.890203.x.
[47] KENNEDY A C, SMITH K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86. DOI: 10.1007/BF02183056.
[48] LI C J, DONG Y, LI H G, et al. Shift from complementarity to facilitation on P uptake by intercropped wheat neighboring with faba bean when available soil P is depleted[J]. Scientific Reports, 2016, 6(1): 18663. DOI: 10.1038/srep18663.
[49] 葛应兰,孙廷.马铃薯根际与非根际土壤微生物群落结构及多样性特征[J].生态环境学报,2020,29(1):141-148. DOI: 10.16258/j.cnki.1674-5906.2020.01.016.
[50] 伍文宪,张蕾,黄小琴,等.川西北高寒牧区不同人工草地对土壤微生物多样性影响[J].草业学报,2019,28(3):29-41. DOI: 10.11686/cyxb2018489.
[51] 愚广灵.长期围封条件下高寒草地土壤团聚体有机碳库稳定的微生物学机制[D].乌鲁木齐:新疆农业大学,2022. DOI: 10.27431/d.cnki.gxnyu.2022.000444.
[1] 刘宁, 刘佩雯, 何浩勇, 李嘉炜, 邓玉婷, 王露, 吕嘉恒, 卢丽求, 黄坚华, 马姜明. 凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 161-173.
[2] 康福丽,朱国政,林钰,胡振兴,邓荫伟,冯玉能,陈胜华,陈付林,刘灵. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112.
Viewed
Full text
46
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 46

  From Others local
  Times 16 30
  Rate 35% 65%

Abstract
36
Just accepted Online first Issue
0 0 36
  From Others local
  Times 33 3
  Rate 92% 8%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发