2025年04月13日 星期日

广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 150-160.doi: 10.16088/j.issn.1001-6600.2024062801

• “生态保护与资源可持续利用”专辑 • 上一篇    下一篇

马尾松补植木荷对土壤微生物生物量碳氮的动态影响

彭素琴1,2, 刘郁林3, 毛瑢4, 刘苑秋4*, 樊乙萱5, 周玉姗1,2, 杨琪1,2   

  1. 1.赣南师范大学 地理与环境工程学院,江西 赣州 341000;
    2.江西省竹基新材料与物质转化工程研究中心(赣南师范大学),江西 赣州 341000;
    3.江西环境工程职业学院 林学院,江西 赣州341000;
    4.江西农业大学 林学院,江西 南昌 330045;
    5.湖北大学 资源环境学院,湖北 武汉 430062
  • 收稿日期:2024-06-28 修回日期:2024-07-29 出版日期:2025-01-05 发布日期:2025-02-07
  • 通讯作者: 刘苑秋(1963—),女,江西寻乌人,江西农业大学教授,博士。E-mail:liuyq404@163.com
  • 基金资助:
    国家自然科学基金(31860236);赣鄱英才555工程项目;江西省自然科学基金(20202BABL203040)

Dynamic Effects of Pinus massoniana Replanted with Broad-leaved Trees of Schima superb on Soil Microbial Biomass Carbon and Nitrogen

PENG Suqin1,2, LIU Yulin3, MAO Rong4, LIU Yuqiu4*, FAN Yixuan5, ZHOU Yushan1,2, YANG Qi1,2   

  1. 1. School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou Jiangxi 341000, China;
    2. Engineering Research Center of Bamboo-base New Materials and Material Transformation in Jiangxi, Gannan Normal University, Ganzhou Jiangxi 341000, China;
    3. College of Forestry, Jiangxi Environmental Engineering Vocational College, Ganzhou Jiangxi 341002, China;
    4. College of Forestry, Jiangxi Agricultural University, Nanchang Jiangxi 330045, China;
    5. College of Resources and Environment, Hubei University, Wuhan Hubei 430062, China
  • Received:2024-06-28 Revised:2024-07-29 Online:2025-01-05 Published:2025-02-07

摘要: 土壤微生物生物量对研究森林土壤养分状况和碳氮循环有重要意义,为探明退化红壤区不同林分结构下土壤微生物生物量碳氮分布特征和季节、土层变化规律,本研究以土壤微生物生物量碳(MBC)和土壤微生物生物量氮(MBN)含量为测定指标,以1991年营造的马尾松Pinus massoniana林和木荷Schima superb林为对照,分析马尾松林补植木荷对不同土层MBC、MBN含量的影响及其季节变化规律。结果表明:1)木荷林、马尾松木荷混交林土壤MBC含量显著高于马尾松林(P<0.05),马尾松林补植阔叶树木荷后显著提升了土壤MBC含量(P<0.05)。3种林分类型表层土壤MBC含量均显著高于深层土壤(P<0.05),季节之间有显著差异(P<0.05),MBC含量在春季最高,冬季最低。2)木荷林、马尾松木荷混交林土壤MBN含量显著高于马尾松林(P<0.05),马尾松林补植阔叶树木荷显著提高了土壤MBN含量(P<0.05)。3种林分土壤MBN含量均随着土层的加深而减少,季节对土壤MBN有显著影响(P<0.05),MBN含量在春季最高,夏季最低。3)土壤微生物生物量碳、氮之间存在极显著正相关性(P<0.01),土壤MBC含量与凋落物性质无显著相关性(P>0.05);土壤MBN含量与凋落物氮含量显著正相关(P<0.05),与凋落物碳含量、凋落物C/N极显著负相关(P<0.01)。研究结果表明马尾松林补植木荷显著提高了土壤微生物生物量碳氮(P<0.05),有利于土壤肥力的提升。

关键词: 退化红壤, 马尾松, 林分结构, 土壤微生物生物量, 碳氮比, 季节变化

Abstract: The study of soil microbial biomass carbon and nitrogen is of great significance for the study of the forest soil nutrient status and carbon and nitrogen cycle, in order to find out the distribution characteristics and seasonal and soil layer change rules of forest soil microbial biomass carbon and nitrogen under different stand structure in degraded red soil region. The contents of soil microbial biomass carbon and nitrogen were taken as the measurement indexes,the soil of the Pinus massoniana pure plantation and Schima superb pure plantation planted in 1991 were taken as the control, and the effects of the P. massoniana replanted with broad-leaved treest of S. superb on soil microbial biomass carbon and nitrogen contents in different soil layers and their seasonal laws were analyzed. The results showed as follows: (1) Soil MBC content of S. superb plantation and the mixed plantation of P. massoniana and S. superb plantation was significantly higher than that of P. massoniana plantation (P<0.05), the content of soil MBC was significantly increased after the P. massoniana forest was thinned and replanted with broad-leaved trees of S. superb(P<0.05) and the soil MBC of all plantations decreased with the depth of soil layer. Seasons had a significant effect on soil MBC (P<0.05), and the soil MBC content of the three plantations was almost the highest in spring and the lowest in winter; (2) Soil MBN content of S. superb plantation and the mixed plantation of P. massoniana and S. superb plantation was significantly higher than that of P. massoniana plantation (P<0.05), the content of soil MBN was significantly increased after the P. massoniana forest was thinned and replanted with broad-leaved trees of S. superb (P<0.05). and the soil MBN of all plantations decreased with the depth of soil layer. Seasons had a significant effect on soil MBN, and the soil MBN content of the three plantations was almost the highest in spring and the lowest in summer (P<0.05); (3)There was significant positive correlation between soil MBC and soil MBN (P<0.01), the soil MBN was significantly positively correlated with litter N (P<0.05), and negatively correlated with litter C and litter C/N (P<0.01). The results showed that the content of soil MBC and MBN was significantly increased after the P. Massoniana plantation was thinned and replanted with broad-leaved trees of S. superb (P<0.05), which was more conducive to the improvement of soil fertility.

Key words: degraded red soil, Pinus massoniana, stand structure, soil microbial biomass, C/N ratio, seasonal variation

中图分类号:  S714.3

[1] LI J P, MA H B, XIE Y Z, et al. Deep soil C and N pools in long-term fenced and overgrazed temperate grasslands in northwest China[J]. Scientific Reports, 2019, 9(1): 16088. DOI: 10.1038/s41598-019-52631-6.
[2] GAO W, HUANG S D, HUANG Y R, et al. Effects of tree species on soil carbon and nitrogen stocks in a coastal sand dune of southern subtropical China[J]. Vegetos, 2019, 32(2): 142-150. DOI: 10.1007/s42535-019-00017-4.
[3] 李伟, 王巧珍, 刘小飞, 等. 森林转换对土壤可溶性有机碳和微生物生物量碳的影响[J]. 亚热带资源与环境学报, 2015, 10(1): 43-50. DOI: 10.19687/j.cnki.1673-7105.2015.01.006.
[4] JAFFRAIN J, F. GÉRARD, MEYER M, et al. Assessing the quality of dissolved organic matter in forest soils using ultraviolet absorption spectrophotometry[J]. Soil Science Society of America Journal, 2010, 71(6): 1851-1858. DOI: 10.2136/sssaj2006.0202.
[5] THOMAS B W, WHALEN J K, SHARIFI M, et al. Labile organic matter fractions as early-season nitrogen supply indicators in manure-amended soils[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(1): 94-103. DOI: 10.1002/jpln.201400532.
[6] LI P, YANG Y H, HAN W X, et al. Global patterns of soil microbial nitrogen and phosphorus stoichiometry in forest ecosystems[J]. Global Ecology and Biogeography, 2014, 23(9): 979-987. DOI: 10.1111/geb.12190.
[7] 赵紫薇, 阮宏华, 杨艳, 等. 干旱对杨树人工林土壤微生物生物量碳氮磷生态化学计量特征的影响[J/OL]. 南京林业大学学报(自然科学版):1-10[2024-06-28]. http://kns.cnki.net/kcms/detail/32.1161.s.20240423.1204.002.html.
[8] 张洋, 倪九派, 周川, 等. 三峡库区紫色土旱坡地桑树配置模式对土壤微生物生物量碳氮的影响[J]. 中国生态农业学报, 2014, 22(7): 766-773. DOI: 10.3724/SP.J.1011.2014.40377.
[9] LANGE M, TÜRKE M, PAŠALIĆE, et al. Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure[J]. Forest Ecology and Management, 2014, 329: 166-176. DOI: 10.1016/j.foreco.2014.06.012.
[10] AZUMA D L, ESKELSON B N I, THOMPSON J L. Effects of rural residential development on forest communities in Oregon and Washington, USA[J]. Forest Ecology and Management, 2014, 330: 183-191. DOI: 10.1016/j.foreco.2014.07.018.
[11] CHEN X L, WANG D, CHEN X, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation[J]. Applied Soil Ecology, 2015, 92: 35-44. DOI: 10.1016/j.apsoil.2015.01.018.
[12] ZHOU L, SUN Y J, SAEED S, et al. The difference of soil properties between pure and mixed Chinese fir (Cunninghamia lanceolata) plantations depends on tree species[J]. Global Ecology and Conservation, 2020, 22: e1009. DOI: 10.1016/j.gecco.2020.e01009.
[13] CHEN X L, CHEN H Y H, CHEN X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations[J]. Applied Soil Ecology, 2016, 107: 162-169. DOI: 10.1016/j.apsoil.2016.05.016.
[14] 颜耀, 张辉, 黄智军, 等. 补植阔叶树种对红壤侵蚀区马尾松林水源涵养功能的影响[J]. 福建农林大学学报(自然科学版), 2020, 49(1): 67-73. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2020.01.012.
[15] 曹小玉, 李际平, 委霞. 中亚热带典型林分空间结构对土壤养分含量的影响[J]. 林业科学, 2020, 56(1): 20-27. DOI: 10.11707/j.1001-7488.20200103.
[16] 徐芷君, 刘苑秋, 方向民, 等. 亚热带2种针叶林土壤碳氮磷储量及化学计量比对混交的响应[J]. 水土保持学报, 2019, 33(1): 165-170. DOI: 10.13870/j.cnki.stbcxb.2019.01.027.
[17] COOK R L, BINKLEY D, MENDES J C T, et al. Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil[J]. Forest Ecology and Management, 2014, 324: 37-45. DOI: 10.1016/j.foreco.2014.03.019.
[18] 梁艳, 明安刚, 何友均, 等. 南亚热带马尾松—红椎混交林及其纯林土壤细菌群落结构与功能[J]. 应用生态学报, 2021, 32(3): 878-886. DOI: 10.13287/j.1001-9332.202103.37.
[19] 詹学齐. 马尾松林冠下套种阔叶树20年间土壤肥力变化[J]. 北京林业大学学报, 2018, 40(6): 55-61. DOI: 10.13332/j.1000-1522.20170463.
[20] SHEN Y F, CHENG R M, XIAO W F, et al. Effects of understory removal and thinning on soil aggregation, and organic carbon distribution in Pinus massoniana plantations in the three Gorges Reservoir area[J]. Ecological Indicators, 2021, 123: 107323. DOI: 10.1016/j.ecolind.2020.107323.
[21] FANG X M, ZHANG X L, ZONG Y Y, et al. Soil phosphorus functional fractions and tree tissue nutrient concentrations influenced by stand density in subtropical Chinese fir plantation forests[J]. PLos One, 2017, 12(10): e0186905. DOI: 10.1371/journal.pone.0186905.
[22] 丁国昌, 万晓华, 杨起帆, 等. 亚热带树种转换对林地土壤微生物群落结构和功能的影响[J]. 应用生态学报, 2017, 28(11): 3751-3758. DOI: 10.13287/j.1001-9332.201711.039.
[23] BARGALI K, MANRAL V, PADALIA K, et al. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India[J]. Catena, 2018, 171: 125-135. DOI: 10.1016/j.catena.2018.07.001.
[24] 董敏慧, 张良成, 文丽, 等. 松树—樟树混交林、纯林土壤微生物量碳、氮及多样性特征研究[J]. 中南林业科技大学学报, 2017, 37(11): 146-153. DOI: 10.14067/j.cnki.1673-923x.2017.11.024.
[25] 陆晓明. 马尾松人工林近自然化改造对物种多样性及生物量的影响[D]. 南宁: 广西大学, 2014.
[26] 彭素琴, 刘郁林, 刘苑秋, 等. 针叶林补阔对土壤有机碳、氮含量的影响[J]. 赣南师范大学学报, 2022, 43(3): 97-102. DOI: 10.13698/j.cnki.cn36-1346/c.2022.03.020.
[27] 吴金水,林启美,黄巧云,等. 土壤微生物生物量测定方法及应用[M]. 北京: 气象出版社, 2006.
[28] 耿浦耀, 王晓丽, 罗少辉, 等. 返青期休牧对三江源区土壤微生物量碳、氮和氮矿化的影响[J]. 生态学报, 2024, 44(14):6219-6231. DOI: 10.20103/j.stxb.202311032395.
[29] 石丽娜, 林开敏, 陈梦瑶,等. 近自然杉木林经营对土壤微生物量碳氮特征的影响[J]. 土壤通报, 2018, 49(1): 112-118. DOI: 10.19336/j.cnki.trtb.2018.01.16.
[30] 李雪, 万晓华, 周富伟, 等. 南亚热带6种人工林土壤微生物生物量和群落结构特征[J]. 亚热带资源与环境学报, 2020, 15(1): 33-40. DOI: 10.3969/j.issn.1673-7105.2020.01.006.
[31] 王玉凤, 席守鸿, 谭玲, 等. 南亚热带马尾松—红锥混交林与其纯林对土壤微生物生物量碳和氮的影响比较[J]. 西部林业科学, 2022, 51(2): 93-99, 105. DOI: 10.16473/j.cnki.xblykx1972.2022.02.014.
[32] QUIDEAU S A, CHADWICK O A, TRUMBORE S E. Vegetation control on soil organic matter dynamics[J]. Organic Geochemistry, 2001, 32(2): 247-252. DOI: 10.1016/S0146-6380(00)00171-6.
[33] 樊雪波, 吴福忠, 艾灵, 等. 森林土壤微生物生物量碳对凋落物输入的响应[J]. 亚热带资源与环境学报, 2024, 19(1): 16-23. DOI: 10.19687/j.cnki.1673-7105.2024.01.003.
[34] 王春阳, 周建斌, 董燕婕, 等. 黄土区六种植物凋落物与不同形态氮素对土壤微生物量碳氮含量的影响[J]. 生态学报, 2010, 30(24): 7092-7100.
[35] 吕成群, 黄宝灵, 张明慧, 等. 桉树×相思树混交与纯林土壤微生物区系比较[C]//2008: 微生物实用技术生态环境应用学术研讨会论文集. 北京:中国林业与环境促进会,2008: 95-101.
[36] 黄娟, 邓羽松, 韦慧, 等. 喀斯特峰丛洼地不同植被类型土壤微生物量碳氮磷和养分特征[J]. 土壤通报, 2022, 53(3): 605-612. DOI: 10.19336/j.cnki.trtb.2021081302.
[37] 刘宝, 吴文峰, 林思祖, 等. 中亚热带4种林分类型土壤微生物生物量碳氮特征及季节变化[J]. 应用生态学报, 2019, 30(6): 10. DOI: 10.13287/j.1001-9332.201906.028.
[38] KRAMER C, TRUMBORE S, FRÖBERG M, et al. Recent (<4 year old) leaf litter is not a major source of microbial carbon in a temperate forest mineral soil[J]. Soil Biology and Biochemistry, 2010, 42(7): 1028-1037. DOI: 10.1016/j.soilbio.2010.02.021.
[39] 林建美. 塞罕坝不同林分类型土壤活性有机碳特征研究[D]. 北京: 北京林业大学, 2020.
[40] 王娟娟. 上海市五种绿化群落土壤微生物生物量的特征研究[D]. 上海: 华东师范大学, 2016.
[41] YANG X, MENG J, LAN Y, et al. Effects of maize stover and its biochar on soil CO2 emissions and labile organic carbon fractions in Northeast China[J]. Agriculture, Ecosystems and Environment, 2017, 240: 24-31. DOI: 10.1016/j.agee.2017.02.001.
[42] 刘平, 邱月, 王玉涛, 等. 渤海泥质海岸典型防护林土壤微生物量季节动态变化[J]. 生态学报, 2019, 39(1): 363-370. DOI: 10.5846/stxb201711021961.
[43] 付志高, 肖以华, 许涵, 等. 南亚热带常绿阔叶林土壤微生物生物量碳氮年际动态特征及其影响因子[J]. 生态学报, 2024, 44(3): 1092-1103. DOI: 10.20103/j.stxb.202212313717.
[44] WARREN M, 邹晓明. 温带阔叶林中氮的保留机制: “春坝”假设及研究实例[J]. 植物生态学报, 2003, 27(1): 11-15. DOI: 10.17521/cjpe.2003.0002.
[45] REN C J, CHEN J, LU X J, et al. Responses of soil total microbial biomass and community compositions to rainfall reductions[J]. Soil Biology and Biochemistry, 2018, 116: 4-10. DOI: 10.1016/j.soilbio.2017.09.028.
[46] XU Z Z, HOU Y H, ZHANG L H, et al. Ecosystem responses to warming and watering in typical and desert steppes[J]. Scientific Reports, 2016, 6: 34801. DOI: 10.1038/srep34801.
[47] ZHANG L H, XIE Z K, ZHAO R F, et al. Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland[J]. Applied Soil Ecology, 2018, 127: 87-95. DOI: 10.1016/j.apsoil.2018.02.005.
[48] KAISER C, FUCHSLUEGER L, KORANDA M, et al. Plants control the seasonal dynamics of microbial N cycling in a beech forest soil by belowground C allocation[J]. Ecology, 2011, 92(5): 1036-1051. DOI: 10.1890/10-1011.1.
[49] 许华, 何明珠, 唐亮, 等. 荒漠土壤微生物量碳、氮变化对降水的响应[J]. 生态学报, 2020, 40(4): 1295-1304. DOI: 10.5846/stxb201901020014.
[50] LUNG MUANA, SINGU S B, VANTHAWMLIANA, et al. Impact of secondary forest fallow period on soil microbial biomass carbon and enzyme activity dynamics under shifting cultivation in North Eastern Hill region, India[J]. Catena, 2017, 156: 10-17. DOI: 10.1016/j.catena.2017.03.017.
[51] WEN L, LEI P F, XIANG W H, et al. Soil microbial biomass carbon and nitrogen in pure and mixed stands of Pinus massoniana and Cinnamomum camphora differing in stand age[J]. Forest Ecology and Management, 2014, 328: 150-158. DOI: 10.1016/j.foreco.2014.05.037.
[52] 袁春阳, 李济宏, 韩鑫, 等. 树种对土壤微生物生物量碳氮的影响: 同质园实验[J]. 植物生态学报, 2022, 46(8): 882-889. DOI: 10.17521/cjpe.2021.0324.
[53] TENG Y M, ZHAN J Y, LIU W, et al. Larch or Mongolian pine? Effects of tree species on soil properties and microbial biomass with the consideration of afforestation time[J]. Ecological Engineering, 2020, 158: 106074. DOI: 510.1016/j.ecoleng.2020.106074.
[54] 王薪琪, 韩轶, 王传宽. 帽儿山不同林龄落叶阔叶林土壤微生物生物量及其季节动态[J]. 植物生态学报, 2017, 41(6): 597-609. DOI: 10.17521/cjpe.2017.0011.
[55] BATJES N H. Total carbon and nitrogen in the soils of the world[J]. European Journal of Soil Science, 1996, 47(2): 151-163. DOI: 10.1111/j.1365-2389.1996.tb01386.x.
[56] PENG Y, SCHMIDT I K, ZHENG H F, et al. Tree species effects on topsoil carbon stock and concentration are mediated by tree species type, mycorrhizal association, and N-fixing ability at the global scale[J]. Forest Ecology and Management, 2020, 478: 118510. DOI: 10.1016/j.foreco.2020.118510.
[57] LI Z L, ZENG Z Q, TIAN D S, et al. The stoichiometry of soil microbial biomass determines metabolic quotient of nitrogen mineralization[J]. Environmental Research Letters, 2020, 15(3): 034005. DOI: 10.1088/1748-9326/ab6a26.
[58] TAYLOR J P, WILSON B, MILLS M S, et al. Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques[J]. Soil Biology and Biochemistry, 2002, 34(3): 387-401. DOI: 10.1016/S0038-0717(01)00199-7.
[59] CHEN C R, XU Z H, ZHANG S L, et al. Soluble organic nitrogen pools in forest soils of subtropical Australia[J]. Plant and Soil, 2005, 277(1): 285-297. DOI: 10.1007/s11104-005-7530-4.
[60] LI Z L, TIAN D S, WANG B X, et al. Microbes drive global soil nitrogen mineralization and availability[J]. Global Change Biology, 2019, 25(3): 1078-1088. DOI: 10.1111/gcb.14557.
[61] 肖好燕, 刘宝, 余再鹏, 等. 亚热带典型林分对表层和深层土壤可溶性有机碳、氮的影响[J]. 应用生态学报, 2016, 27(4): 1031-1038. DOI: 10.13287/j.1001-9332.201604.029.
[1] 张东庆, 闫彪, 常东东, 栾科, 任迎丰, 范明亮, 肖治术, 周岐海. 太行山猕猴日活动节律的季节性[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 116-122.
[2] 凌金燕, 冯源恒, 杨章旗, 陈虎, 谭健晖, 龚桂芳, 罗群凤, 付军, 翟章贵. 马尾松树高生长性状SSR标记关联验证[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 152-160.
[3] 黄建华, 谢春俊, 韦长江, 张挺, 肖继谋, 廖长坤, 黄鹏成, 何振, 吴立潮. 营造马尾松-桉树混交林防治松材线虫病研究进展[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 1-8.
[4] 李鹏, 魏文初, 邱辉, 杨章旗, 陈虎, 邱承相, 李远明, 龙振云, 吴东山. 马尾松桐棉种源优树子代遗传测定与选择[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 182-190.
[5] 李玉凤, 秦佳双, 马姜明, 杨章旗, 李明金, 陆绍浩, 宋尊荣. 南亚热带马尾松人工林地上生物量模型构建及分配特征[J]. 广西师范大学学报(自然科学版), 2021, 39(4): 170-180.
[6] 张惠, 刘红影, 张宇宁, 马姜明, 莫燕华, 零天旺, 杨章旗, 李明金. 马尾松人工林近自然恢复过程中林下木本植物生活型谱与叶相[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 119-127.
[7] 王永琪, 秦佳双, 马姜明, 菅瑞, 潘小梅, 杨章旗, 零天旺, 李明金. 南亚热带马尾松人工林林下木本植物的物种多样性[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 131-139.
[8] 曾卫, 龙永才, 高歌, 李万德, 胡远芳, 李雪竹, 王羽丰, 邵施苗, 罗旭. 云南古林箐自然保护区的鸟类多样性[J]. 广西师范大学学报(自然科学版), 2020, 38(4): 113-123.
[9] 宋尊荣, 秦佳双, 李明金, 马姜明, 钟凤跃, 杨章旗, 颜培栋. 南亚热带马尾松人工林根系生物量分布格局[J]. 广西师范大学学报(自然科学版), 2020, 38(1): 149-156.
[10] 潘小梅, 李明金, 杨章旗, 马姜明, 零天旺, 颜培栋. 广西南亚热带不同林龄马尾松人工林林下植物区系研究[J]. 广西师范大学学报(自然科学版), 2019, 37(4): 136-143.
[11] 梁士楚, 石贵玉, 韦宇静, 李明霞. 桉树抗逆性生理指标的季节变化[J]. 广西师范大学学报(自然科学版), 2014, 32(3): 116-120.
[12] 廖盛厦, 李军伟, 杨红兰, 甘肖梅, 梁士楚. 龙须藤净光合速率日变化及其主要影响因子[J]. 广西师范大学学报(自然科学版), 2010, 28(3): 61-65.
Viewed
Full text
24
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 0 0 24

  From Others local
  Times 1 23
  Rate 4% 96%

Abstract
45
Just accepted Online first Issue
0 0 45
  From Others local
  Times 36 9
  Rate 80% 20%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
[1] 何静, 冯元柳, 邵靖雯. 基于CiteSpace的多源数据融合研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 13 -27 .
[2] 刘畅平, 宋树祥, 蒋品群, 岑明灿. 基于开关电容的差分无源N通道滤波器[J]. 广西师范大学学报(自然科学版), 2024, 42(5): 52 -60 .
[3] 王淑颖, 卢宇翔, 董淑彤, 陈默, 康秉娅, 蒋长兰, 宿程远. 污水中抗生素抗性基因传播过程及控制技术研究进展[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 1 -15 .
[4] 钟俏, 陈生龙, 唐聪聪. 水凝胶技术在微藻采收中的应用:现状、挑战与发展分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 16 -29 .
[5] 翟思琪, 蔡文君, 朱苏, 李韩龙, 宋海亮, 杨小丽, 杨玉立. 汲取液溶质反向扩散与正渗透中膜污染的相互关系研究[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 30 -39 .
[6] 郑国权, 秦永丽, 汪晨祥, 葛仕佳, 闻倩敏, 蒋永荣. ABR硫酸盐还原体系分级沉淀酸性矿山废水中重金属及矿物形成[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 40 -52 .
[7] 刘洋, 张毅杰, 章延, 李玲, 孔祥铭, 李红. 饮用水处理中藻类混凝消除技术的现状与趋势——基于CiteSpace的可视化分析[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 53 -66 .
[8] 田晟, 陈东. 基于深度强化学习的网联燃料电池混合动力汽车生态驾驶联合优化方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 67 -80 .
[9] 陈秀锋, 王成鑫, 赵凤阳, 杨凯, 谷可鑫. 改进DQN算法的单点交叉口信号控制方法[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 81 -88 .
[10] 李欣, 宁静. 基于时空特征融合的电力系统暂态稳定评估[J]. 广西师范大学学报(自然科学版), 2024, 42(6): 89 -100 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发