广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 156-171.doi: 10.16088/j.issn.1001-6600.2025022805

• 生态环境科学研究 • 上一篇    下一篇

石灰土与红壤的原土和团聚体中微生物对养分限制的响应策略

李佩云1,2,3, 张苑3, 陈荣枢1,2,3, 胡馨月3, 徐海荧3, 吕利3, 梁建宏4,5, 朱婧1,2,3*   

  1. 1.广西生态脆弱区环境过程与修复重点实验室(广西师范大学),广西 桂林 541006;
    2.珍稀濒危动植物生态与环境保护教育部重点实验室(广西师范大学),广西 桂林 541006;
    3.广西师范大学 环境与资源学院,广西 桂林 541006;
    4.中国地质科学院岩溶地质研究所,广西 桂林 541004;
    5.自然资源部/广西壮族自治区岩溶动力学重点实验室(中国地质科学院岩溶地质研究所),广西 桂林 541004
  • 收稿日期:2025-02-28 修回日期:2025-05-01 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 朱婧(1982—),女,广西桂林人,广西师范大学教授,博士。E-mail: zhuj@gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(41967005);广西重点研发计划项目(桂科AB22035004);广西生态脆弱区环境过程与修复重点实验室研究基金(EPRZR2024-05)

Response Strategies of Microorganisms to Nutrient Limitations in Bulk and Aggregates of Limestone and Red Soils

LI Peiyun1,2,3, ZHANG Yuan3, CHEN Rongshu1,2,3, HU Xinyue3, XU Haiying3, LÜ Li3, LIANG Jianhong4,5, ZHU Jing1,2,3*   

  1. 1. Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541006, China;
    3. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    4. Institute of Karst Geology, Chinese Academy of Geological Sciences, Guilin Guangxi 541004, China;
    5. Ministry of Natural Resources, Guangxi Key Laboratory of Karst Dynamics (Institute of Karst Geology, Chinese Academy of Geological Sciences), Guilin Guangxi 541004, China
  • Received:2025-02-28 Revised:2025-05-01 Online:2026-01-05 Published:2026-01-26

摘要: 土壤资源供给不平衡会导致微生物养分限制,不同类型土壤及团聚体中的微生物面临养分限制时采取的响应策略及其对土壤有机碳(SOC)含量的影响仍不清楚。本研究选取中国亚热带季风气候区次生林植被覆盖下的典型喀斯特中性石灰性土壤(LS)和酸性红壤(RS)作为对比,通过土壤原土及其团聚体的全量、可利用态、微生物生物量和胞外酶碳、氮、磷的计量比和微生物与资源的化学计量不平衡性等指标评价其养分限制特征,并分析不同土壤微生物养分限制的响应策略及其对土壤SOC的影响。结果表明,不同元素化学计量特征所反映的土壤微生物养分限制特征存在差异,其中可利用态和胞外酶计量比及其化学计量不平衡性决定了微生物的响应策略。总体上2种土壤均呈现氮和磷共限制,但相对而言RS的氮和磷限制更强;且其大、中团聚体中存在更强的氮和磷限制。在土壤可溶性有机碳(DOC)的驱动下,RS大、中团聚体中的微生物更多地提高其氮和磷利用效率(NUE和PUE),通过提高磷微生物熵(qMBP)、降低细胞内养分稳态的方式适应养分限制,该过程降低了碳利用效率(CUE);而LS则保持了较高的CUE。土壤SOC含量并未受化学计量不平衡性和微生物响应策略的影响,土壤理化性质(尤其是pH和钙含量)是SOC含量的关键驱动因素。本研究结果为中国亚热带森林生态系统管理和修复过程中土壤养分和碳库的调控提供理论依据。

关键词: 养分限制, 土壤有机碳, 化学计量, 养分利用效率, 微生物熵, 团聚体, 喀斯特

Abstract: Soil nutrient supply imbalance leads to nutrient limitation for microorganisms; however, the microbial response strategies employed in different types of soils and aggregates towards it, as well as the impact on soil organic carbon (SOC), remain unclear. This study selected typical karst neutral calcareous soil (LS) and acidic red soil (RS) under secondary forest vegetation coverage in the subtropical monsoon region of China for comparative analysis. Nutrient limitation characteristics were evaluated using indicators such as the stoichiometric ratios of carbon (C), nitrogen (N), and phosphorus (P) in total amounts, bioavailable fractions, microbial biomass and extracellular enzymes as well as the chemical stoichiometric imbalances between microbes and resources in soil and aggregates. Additionally, the response strategies of different soil microbial communities to nutrient limitation and their impacts on SOC were analyzed. The results indicated that different indicators reflected various nutrient limitation characteristics. Notably, the stoichiometric ratios of bioavailable fractions and extracellular enzymes, along with the chemical stoichiometric imbalances determined the microbial response strategies. Overall, both soil types exhibited co-limitation of N and P, with RS experiencing a comparatively stronger limitation of both elements and stronger N and P limitations were observed in its macro-and medium-aggregates. Driven by soil dissolved organic carbon (DOC), the macro-and medium-aggregates microorganisms tended to enhance their N and P utilization efficiency (NUE and PUE) by increasing microbial phosphorus entropy (qMBP) and lowering the intracellular nutrient homeostasis to adapt to nutrient limitations, a process that resulted in reduced carbon utilization efficiency (CUE). To the contrary, LS kept a higher CUE. The SOC content was not influenced by the chemical stoichiometric imbalance or the microbial response strategies; instead, soil physicochemical properties, particularly pH and calcium content, emerged as key driving factors for SOC levels. The findings of this study provide a theoretical basis for the management and restoration of soil nutrients and carbon pools in subtropical forest ecosystems in China.

Key words: nutrient limitation, soil organic carbon, chemical stoichiometry, nutrient utilization efficiency, microbial entropy, aggregates, karst

中图分类号:  S154.36

[1] YANG Y, GUNINA A, CHENG H, et al. Unlocking mechanisms for soil organic matter accumulation: carbon use efficiency and microbialnecromass as the keys[J]. Global Change Biology, 2025, 31(1): e70033. DOI: 10.1111/gcb.70033.
[2] YUAN X B, NIU D C, GHERARDI L A, et al. Linkages of stoichiometric imbalances to soil microbial respiration with increasing nitrogen addition: evidence from a long-term grassland experiment[J]. Soil Biology and Biochemistry, 2019, 138: 107580. DOI: 10.1016/j.soilbio.2019.107580.
[3] LUO L, ZHU L Y, HONG W, et al. Microbial resource limitation and regulation of soil carbon cycle in Zoige Plateau peatland soils[J]. Catena, 2021, 205: 105478. DOI: 10.1016/j.catena.2021.105478.
[4] LIAO J J, DOU Y X, WANG B R, et al. Soil stoichiometric imbalances constrain microbial-driven C and N dynamics in grassland[J]. Science of the Total Environment, 2024, 924: 171655. DOI: 10.1016/j.scitotenv.2024.171655.
[5] LUO H Q, YU J L, LI R X, et al. Microbial biomass C∶N∶P as a better indicator than soil and ecoenzymatic C∶N∶P for microbial nutrient limitation and C dynamics in Zoige Plateau peatland soils[J]. International Biodeterioration & Biodegradation, 2022, 175: 105492. DOI: 10.1016/j.ibiod.2022.105492.
[6] CHEN H, LI D J, MAO Q G, et al. Resource limitation of soil microbes in karst ecosystems[J]. Science of the Total Environment, 2019, 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036.
[7] CLEVELAND CC, LIPTZIN D. C∶N∶P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass?[J]. Biogeochemistry, 2007, 85(3): 235-252. DOI: 10.1007/s10533-007-9132-0.
[8] SINSABAUGH R L, LAUBER C L, WEINTRAUB M N, et al. Stoichiometry of soil enzyme activity at global scale[J]. Ecology Letters, 2008, 11(11): 1252-1264. DOI: 10.1111/j.1461-0248.2008.01245.x.
[9] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources[J]. Frontiers in Microbiology, 2014, 5: 22. DOI: 10.3389/fmicb.2014.00022.
[10] 朱婧, 刘鼎, 王珊, 等. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387. DOI: 10.16088/j.issn.1001-6600.2022022810.
[11] FANIN N, FROMIN N, BARANTAL S, et al. Stoichiometric plasticity of microbial communities is similar between litter and soil in a tropical rainforest[J]. Scientific Reports, 2017, 7: 12498. DOI: 10.1038/s41598-017-12609-8.
[12] LUO L, MENG H, GU J D. Microbial extracellular enzymes in biogeochemical cycling of ecosystems[J]. Journal of Environmental Management, 2017, 197: 539-549. DOI: 10.1016/j.jenvman.2017.04.023.
[13] BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems[J]. New Phytologist, 2013, 199(1): 7-9. DOI: 10.1111/nph.12334.
[14] MOOSHAMMER M, WANEK W,HÄMMERLE I, et al. Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling[J]. Nature Communications, 2014, 5: 3694. DOI: 10.1038/ncomms4694.
[15] BAI X J, DIPPOLD M A, AN S S, et al. Extracellular enzyme activity and stoichiometry: the effect of soil microbial element limitation during leaf litter decomposition[J]. Ecological Indicators, 2021, 121: 107200. DOI: 10.1016/j.ecolind.2020.107200.
[16] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil and Tillage Research, 2004, 79(1): 7-31. DOI: 10.1016/j.still.2004.03.008.
[17] LUAN H A, GAO W, TANG J W, et al. Aggregate-associated changes in nutrient properties, microbial community and functions in a greenhouse vegetable field based on an eight-year fertilization experiment of China[J]. Journal of Integrative Agriculture, 2020, 19(10): 2530-2548. DOI: 10.1016/S2095-3119(20)63269-5.
[18] YANG C, LIU N, ZHANG Y J. Soil aggregates regulate the impact of soil bacterial and fungal communities on soil respiration[J].Geoderma, 2019, 337: 444-452. DOI: 10.1016/j.geoderma.2018.10.002.
[19] HAN S, LUO X S, HAO X L, et al. Microscale heterogeneity of the soil nitrogen cycling microbial functional structure and potential metabolism[J]. Environmental Microbiology, 2021, 23(2): 1199-1209. DOI: 10.1111/1462-2920.15348.
[20] SUN D Q, LIN Q, ANGST G, et al. Microbial communities in soil macro-aggregates with less connected networks respire less across successional and geographic gradients[J]. European Journal of Soil Biology, 2022, 108: 103378. DOI: 10.1016/j.ejsobi.2021.103378.
[21] 苏芝凤, 黄德周, 朱芷仪, 等. 亚热带森林不同土壤类型团聚体酶活性及化学计量特征的差异[J]. 环境科学, 2025, 46(3): 1716-1728. DOI: 10.13227/j.hjkx.202401042.
[22] SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils[J]. Ecological Monographs, 2016, 86(2): 172-189. DOI: 10.1890/15-2110.1.
[23] XU C H, XU X, JU C H, et al. Long-term, amplified responses of soil organic carbon to nitrogen addition worldwide[J]. Global Change Biology, 2021, 27(6): 1170-1180. DOI: 10.1111/gcb.15489.
[24] MALIK A A, MARTINY J B H, BRODIE E L, et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change[J]. The ISME Journal, 2020, 14(1): 1-9. DOI: 10.1038/s41396-019-0510-0.
[25] FANG X M, ZHANG X L, CHEN F S, et al. Phosphorus addition alters the response of soil organic carbon decomposition to nitrogen deposition in a subtropical forest[J]. Soil Biology and Biochemistry, 2019, 133: 119-128. DOI: 10.1016/j.soilbio.2019.03.005.
[26] WANG Y, ZHANG L M, CHEN J, et al. Functional diversity of plant communities in relationship to leaf and soil stoichiometry in karst areas of southwest China[J]. Forests, 2022, 13(6): 864. DOI: 10.3390/f13060864.
[27] CHEN H, LI D J, XIAO K C, et al. Soil microbial processes and resource limitation in karst and non-karst forests[J]. Functional Ecology, 2018, 32(5): 1400-1409. DOI: 10.1111/1365-2435.13069.
[28] JIANG Y J, SUN B, LI H X, et al. Aggregate-related changes in network patterns of nematodes and ammonia oxidizers in an acidic soil[J]. Soil Biology and Biochemistry, 2015, 88: 101-109. DOI: 10.1016/j.soilbio.2015.05.013.
[29] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.
[30] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科学技术出版社, 2000.
[31] BROOKES P C, LANDMAN A, PRUDEN G, et al. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil[J]. Soil Biology and Biochemistry, 1985, 17(6): 837-842. DOI: 10.1016/0038-0717(85)90144-0.
[32] VANCE E D, BROOKES P C, JENKINSON D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology and Biochemistry, 1987, 19(6): 703-707. DOI: 10.1016/0038-0717(87)90052-6.
[33] SAIYA-CORK K R, SINSABAUGH R L, ZAK D R. The effects oflong term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil[J]. Soil Biology and Biochemistry, 2002, 34(9): 1309-1315. DOI: 10.1016/S0038-0717(02)00074-3.
[34] ZHONG Z K, LI W J, LU X Q, et al. Adaptive pathways of soil microorganisms to stoichiometric imbalances regulate microbial respiration following afforestation in the Loess Plateau, China[J]. Soil Biology and Biochemistry, 2020, 151: 108048. DOI: 10.1016/j.soilbio.2020.108048.
[35] LI B, LI Y B, FANIN N, et al. Stoichiometric imbalances between soil microorganisms and their resources regulate litter decomposition[J]. Functional Ecology, 2023, 37(12): 3136-3149. DOI: 10.1111/1365-2435.14459.
[36] XU M P, LI W J, WANG J Y, et al. Soilecoenzymatic stoichiometry reveals microbial phosphorus limitation after vegetation restoration on the Loess Plateau, China[J]. Science of the Total Environment, 2022, 815: 152918. DOI: 10.1016/j.scitotenv.2022.152918.
[37] LI J W, LIU Y L, HAI X Y, et al. Dynamics of soil microbial C∶N∶P stoichiometry and its driving mechanisms following natural vegetation restoration after farmland abandonment[J]. Science of the Total Environment, 2019, 693: 133613. DOI: 10.1016/j.scitotenv.2019.133613.
[38] LIU C H, WANG B R, ZHU Y Z, et al. Eco-enzymatic stoichiometry and microbial non-homeostatic regulation depend on relative resource availability during litter decomposition[J]. Ecological Indicators, 2022, 145: 109729. DOI: 10.1016/j.ecolind.2022.109729.
[39] MOORHEAD D L, RINKES Z L, SINSABAUGH R L, et al. Dynamic relationships between microbial biomass, respiration, inorganic nutrients and enzyme activities: informing enzyme-based decomposition models[J]. Frontiers in Microbiology, 2013, 4: 223. DOI: 10.3389/fmicb.2013.00223.
[40] 王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3937-3947. DOI: 10.3321/j.issn:1000-0933.2008.08.054.
[41] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303.
[42] 刘宁, 刘佩雯, 何浩勇, 等. 凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 161-173. DOI: 10.16088/j.issn.1001-6600.2024080202.
[43] MORI T, AOYAGI R, KITAYAMA K, et al. Does the ratio of β-1,4-glucosidase to β-1,4-N-acetylglucosaminidase indicate the relative resource allocation of soil microbes to C and N acquisition?[J]. Soil Biology and Biochemistry, 2021, 160: 108363. DOI: 10.1016/j.soilbio.2021.108363.
[44] ROSINGER C, ROUSK J, SANDÉN H. Can enzymatic stoichiometry be used to determine growth-limiting nutrients for microorganisms? A critical assessment in two subtropical soils[J]. Soil Biology and Biochemistry, 2019, 128: 115-126. DOI: 10.1016/j.soilbio.2018.10.011.
[45] WANG J P, WU Y H, LI J J, et al. Soil enzyme stoichiometry is tightly linked to microbial community composition in successional ecosystems after glacier retreat[J]. Soil Biology and Biochemistry, 2021, 162: 108429. DOI: 10.1016/j.soilbio.2021.108429.
[46] LI T P, WANG R Z, CAI J P, et al. Enhanced carbon acquisition and use efficiency alleviate microbial carbon relative to nitrogen limitation under soil acidification[J]. Ecological Processes, 2021, 10(1): 32. DOI: 10.1186/s13717-021-00309-1.
[47] 程琪, 毛霞丽, 孙涛, 等. 长期化肥与不同有机物料配施对土壤微生物生态化学计量特征和群落结构的影响[J]. 植物营养与肥料学报, 2024, 30(2): 209-220. DOI: 10.11674/zwyf.2023398.
[48] 任娇娇, 周运超, 刘兵, 等. 石灰岩发育土壤团聚体形成机制研究[J]. 中国岩溶, 2019, 38(5): 722-728. DOI: 10.11932/karst2019y17.
[49] FENG M, XIANG J, JI X F, et al.Larger soil water-stable aggregate may exert a negative effect on nutrient availability: results from red soil (ultisol), in South China[J]. Forests, 2023, 14(5): 975. DOI: 10.3390/f14050975.
[50] XIAO D, TANG Y X, ZHANG W, et al. Lithology and niche habitat have significant effect on arbuscular mycorrhizal fungal abundance and their interspecific interactions[J]. Science of the Total Environment, 2024, 919: 170774. DOI: 10.1016/j.scitotenv.2024.170774.
[51] 彭素琴, 刘郁林, 毛瑢, 等. 马尾松补植木荷对土壤微生物生物量碳氮的动态影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 150-160. DOI: 10.16088/j.issn.1001-6600.2024062801.
[52] 陶冬雪, 高英志. 土壤解磷微生物促进植物磷素吸收策略研究进展[J]. 生态学报, 2023, 43(11): 4390-4399. DOI: 10.5846/stxb202111193253.
[53] MANZONI S, DING Y, WARREN C, et al. Intracellular storage reduces stoichiometric imbalances in soil microbial biomass:a theoretical exploration[J]. Frontiers in Ecology and Evolution, 2021, 9: 714134. DOI: 10.3389/fevo.2021.714134.
[54] ZHANG L H, JIA L Z, HE L Y, et al. Homeostatic evidence of management-induced phosphorus decoupling from soil microbial carbon and nitrogen metabolism[J]. Journal of Plant Ecology, 2023, 16(6): rtad035. DOI: 10.1093/jpe/rtad035.
[55] ZHANG Z H, GONG J R, SONG L Y, et al. Adaptations of soil microbes to stoichiometric imbalances in regulating their carbon use efficiency under a range of different grazing intensities[J]. Applied Soil Ecology, 2024, 193: 105141. DOI: 10.1016/j.apsoil.2023.105141.
[56] LIANG C, ZHU X F. The soilMicrobial Carbon Pump as a new concept for terrestrial carbon sequestration[J]. Science China Earth Sciences, 2021, 64(4): 545-558. DOI: 10.1007/s11430-020-9705-9.
[57] TAO F, HUANG Y Y, HUNGATE B A, et al. Microbial carbon use efficiency promotes global soil carbon storage[J]. Nature, 2023, 618(7967): 981-985. DOI: 10.1038/s41586-023-06042-3.
[58] HE X J, ABRAMOFF R Z, ABS E, et al. Model uncertainty obscures major driver of soil carbon[J]. Nature, 2024, 627(8002): E1-E3. DOI: 10.1038/s41586-023-06999-1.
[59] XIAO K Q, LIANG C, WANG Z M, et al. Beyond microbial carbon use efficiency[J]. National Science Review, 2024, 11(4): nwae059. DOI: 10.1093/nsr/nwae059.
[60] WANG X X, CUI Y X, WANG Y H, et al. Ecoenzymatic stoichiometry reveals phosphorus addition alleviates microbial nutrient limitation and promotes soil carbon sequestration in agricultural ecosystems[J]. Journal of Soils and Sediments, 2022, 22(2): 536-546. DOI: 10.1007/s11368-021-03094-8.
[61] MAO X L, VAN ZWIETEN L, ZHANG M K, et al. Soil parent material controls organic matter stocks and retention patterns in subtropical China[J]. Journal of Soils and Sediments, 2020, 20(5): 2426-2438. DOI: 10.1007/s11368-020-02578-3.
[1] 何文敏, 刘宣园, 周岐海, 张明霞. 基于地形数据优化随机森林解译的准确度[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 227-236.
[2] 唐利, 李梦霞, 黄慧欣, 潘心茹, 姜雪芳, 杨淑君, 潘于, 覃云斌. 桂北喀斯特植被恢复对球囊霉素相关土壤蛋白的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 9-19.
[3] 刘宁, 刘佩雯, 何浩勇, 李嘉炜, 邓玉婷, 王露, 吕嘉恒, 卢丽求, 黄坚华, 马姜明. 凋落物对喀斯特檵木土壤微生物生物量和土壤酶活性的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 161-173.
[4] 丁苏雅, 马姜明, 覃云斌, 黄芳玲, 宋丽丽, 刘文清, 李梦霞, 何昕诺. 生物炭对毛竹林土壤有机碳组分及碳库管理指数的影响[J]. 广西师范大学学报(自然科学版), 2024, 42(1): 180-190.
[5] 杨盼, 黄莹, 岑丽捷, 黄丽, 王海苗. 红背山麻杆碳氮磷钾的分布及其计量比特征[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 169-178.
[6] 刘佩雯, 覃云斌, 莫慧婷, 周珍辉, 蒙伟明, 黄启祥, 马姜明. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191.
[7] 刘宣园, 管超毅, 张明霞, 周岐海. 保护区缓解耕地扩张对喀斯特森林景观破碎化的影响研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 202-210.
[8] 王军广, 王鹏, 赵志忠, 唐薇, 赵泽阳, 李燕. 海南岛东部地区土地利用方式对土壤有机碳含量的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(5): 171-179.
[9] 何芳远, 苏权, 陈坤铨, 陈善栋, 姜勇, 罗明, 梁士楚. 基于功能性状及系统发育的桂林喀斯特石山群落构建[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 171-181.
[10] 朱婧, 刘鼎, 王珊, 黄祚水, 梁建宏. 土壤养分及其化学计量特征对微生物碳利用效率的影响机制[J]. 广西师范大学学报(自然科学版), 2022, 40(5): 376-387.
[11] 童凌晨, 李强, 岳鹏鹏. 基于CiteSpace的喀斯特土壤有机碳研究进展[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 22-34.
[12] 唐创斌, 董佩佩, 黄秋婵, 谭卫宁, 周岐海, 汪国海. 啮齿动物对单性木兰和青冈栎种子搬运行为比较[J]. 广西师范大学学报(自然科学版), 2022, 40(4): 199-204.
[13] 曹新光, 岳伟鹏, 邓洁. 北亚热带山地不同海拔土壤有机碳分布特征——以鄂东龟峰山为例[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 174-182.
[14] 莫燕华, 邹涵, 马姜明, 李玉凤, 菅瑞, 秦佳双, 宋尊荣, 林正忠. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130.
[15] 李友邦, 农娟丽, 杨婉琳, 赵佳佳, 朱琪琪. 弄岗同域分布赤腹松鼠和红颊长吻松鼠活动节律研究[J]. 广西师范大学学报(自然科学版), 2021, 39(1): 71-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10 -22 .
[7] 刘志豪, 李自立, 苏珉. 智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 23 -32 .
[8] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[9] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[10] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发