广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 23-32.doi: 10.16088/j.issn.1001-6600.2025010101

• 智慧交通 • 上一篇    下一篇

智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法

刘志豪1,2, 李自立1,2*, 苏珉1,2   

  1. 1.广西高校非线性电路与光通信重点实验室(广西师范大学),广西 桂林 541004;
    2.广西师范大学 电子与信息工程学院/集成电路学院,广西 桂林 541004
  • 收稿日期:2025-01-01 修回日期:2025-03-03 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 李自立(1979—),男,广西桂林人,广西师范大学副教授,博士。E-mail: zlienishi@mailbox.gxnu.edu.cn
  • 基金资助:
    国家自然科学基金(62361006)

YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance

LIU Zhihao1,2, LI Zili1,2*, SU Min1,2   

  1. 1. Key Laboratory of Nonlinear Circuits and Optical Communications (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. School of Electronic and Information Engineering/School of Integrated Circuits, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2025-01-01 Revised:2025-03-03 Online:2026-01-05 Published:2026-01-26

摘要: 电动车骑行者的安全问题已成为社会焦点,而佩戴安全头盔被证明是减少事故伤害的有效方法。为加强道路交通安全,提高监管效率,本文提出一种基于智能通信和深度学习的无人机辅助头盔智能检测算法。通过结合智能通信技术,无人机可以实时传输视频数据并通过智能算法进行快速分析。本文首先提出改进的 Outlook-C2f 架构,以提高算法对小目标的关注度;其次,在特征金字塔网络(FPN)中使用 CARAFE代替上采样,动态生成权重,以实现精确的特征重构,提高空间分辨率;最后,集成 WIoU以提高定位信息的准确性。实验结果表明,基于道路实拍数据集,改进后的 YOLOv8 算法的mAP(mean average precision)和 FPS(frames per second)分别达到96.7%和26.91 帧/s,显著优于主流算法,展现了其在复杂交通场景中的应用潜力。

关键词: 头盔检测, 智能通信, YOLO, 注意力机制, 无人机航拍

Abstract: Nowadays, the safety of electric vehicle (EV) riders has now become a focal issue in society, and wearing safety helmets was proven to be an effective way to reduce injury in accidents. In order to enhance road traffic safety and improve regulatory efficiency, an UAV-assisted helmet intelligent detection algorithm based on intelligent communication and deep learning is proposed. By combining intelligent communication technology, UAVs can transmit video data in real time and analyze it quickly by intelligent algorithms. First, an improved Outlook-C2f architecture was proposed to enhance the algorithm’s focus on the small targets; Second, CARAFE is proposed to used in the Feature Pyramid Network (FPN) to dynamically generate weights for precise feature reconstruction and improved spatial resolution; Finally, WIoU (Wise Intersection over Union) was integrated to improve the accuracy of positional information. The experimental results show that, based on the road real-time dataset, the improved YOLOv8 algorithm achieves 96.7% mAP and 26.91 FPS, which are significantly better than the traditional method, demonstrating its potential for application in complex traffic scenarios.

Key words: helmet detection, intelligent communication, YOLO, attention mechanism, UAV aerial photography

中图分类号:  U492.8

[1] 宋昀农, 马蔚蔚, 沈健, 等. 电动车驾驶员佩戴头盔与伤亡关系的分析研究[J]. 中国城乡企业卫生, 2020, 35(12): 7-9. DOI: 10.16286/j.1003-5052.2020.12.003.
[2] 樊邦奎, 张瑞雨. 无人机系统与人工智能[J]. 武汉大学学报(信息科学版), 2017, 42(11): 1523-1529. DOI: 10.13203/j.whugis20170177.
[3] BOUHAYANE A, CHAROUH Z, GHOGHO M, et al. A swin transformer-based approach for motorcycle helmet detection[J]. IEEE Access, 2023, 11: 74410-74419.
[4] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[5] MERCADO REYNA J, LUNA-GARCIA H, ESPINO-SALINAS C H, et al. Detection of helmet use in motorcycle drivers using convolutional neural network[J]. Applied Sciences, 2023, 13(10): 5882. DOI: 10.3390/app13105882.
[6] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the inception architecture for computer vision[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway, NJ: IEEE, 2016: 2818-2826. DOI: 10.1109/CVPR.2016.308.
[7] JIA W, XU S Q, LIANG Z, et al. Real-time automatic helmet detection of motorcyclists in urban traffic using improved YOLOv5 detector[J]. IET Image Processing, 2021, 15(14): 3623-3637. DOI: 10.1049/ipr2.12295.
[8] ZHOU S Y, PENG Z Y, ZHANG H L, et al. Helmet-YOLO: a new method for real-time, high-precision helmet wearing detection[J]. IEEE Access, 2024. DOI: 10.1109/ACCESS.2024.3443146.
[9] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.Piscataway,NJ: IEEE, 2001: 1-9. DOI: 10.1109/CVPR.2001.990517.
[10] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. DOI: 10.1023/B:VISI.0000029664.99615.94.
[11] GIRSHICK R. Fast R-CNN[C]//2015 IEEE International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[12] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[13] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multiBox detector[C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 21-37. DOI: 10.1007/978-3-319-46448-0_2.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2025-03-20]. https://arxiv.org/abs/1804.02767v1.
[15] BOCHKOVSKIY A, WANG C Y, LIAO H M. YOLOv4: optimal speed and accuracy of object detection[EB/OL]. (2020-04-23)[2025-03-20]. 10934. https://arxiv.org/abs/2004.10934v1.
[16] WANG C Y, BOCHKOVSKIY A, LIAO H M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ: IEEE, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[17] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[C]//2017 IEEE International Conference on Computer Vision (ICCV).Piscataway,NJ: IEEE, 2017: 2999-3007. DOI: 10.1109/ICCV.2017.324.
[18] WANG J Q, CHEN K, XU R, et al. CARAFE: content-aware ReAssembly of FEatures[C]//2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway,NJ: IEEE, 2019: 3007-3016. DOI: 10.1109/ICCV.2019.00310.
[19] TONG Z J, CHEN Y H, XU Z W, et al. Wise-IoU: bounding box regression loss with dynamic focusing mechanism[EB/OL].(2023-08-08)[2025-03-20]. https://arxiv.org/pdf/2301.10051.
[20] YUAN L, HOU Q B, JIANG Z H, et al. VOLO: vision outlooker for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(5): 6575-6586. DOI: 10.1109/TPAMI.2022.3206108.
[21] HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]//2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).Piscataway,NJ: IEEE, 2021: 13708-13717. DOI: 10.1109/CVPR46437.2021.01350.
[22] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[1] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1-9.
[2] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10-22.
[3] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56-67.
[4] 施子豪, 蒙祖强, 谈超洪. 基于注意力机制和多尺度融合的多模态虚假新闻检测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 68-79.
[5] 魏梓书, 陈志刚, 王衍学, 哈斯铁尔·马德提汗. 基于SBSI-YOLO11的轻量化轴承外观缺陷检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 80-91.
[6] 黎豊玮, 谭玉枚, 宋树祥, 夏海英. 基于注意力引导的遮挡感知面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 104-113.
[7] 刘廷汉, 梁艳, 黄鹏升, 闭金杰, 黄守麟, 李廷会. 基于改进YOLOv8s的人脸痤疮小目标检测[J]. 广西师范大学学报(自然科学版), 2025, 43(5): 114-129.
[8] 田晟, 熊辰崟, 龙安洋. 基于改进PointNet++的城市道路点云分类方法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 1-14.
[9] 韩烁, 江林峰, 杨建斌. 基于注意力机制PINNs方法求解圣维南方程[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 58-68.
[10] 石天怡, 南新元, 郭翔羽, 赵濮, 蔡鑫. 基于改进ConvNeXt的苹果叶片病害分类算法[J]. 广西师范大学学报(自然科学版), 2025, 43(4): 83-96.
[11] 卢展跃, 陈艳平, 杨卫哲, 黄瑞章, 秦永彬. 基于掩码注意力与多特征卷积网络的关系抽取方法[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 12-22.
[12] 梁胤杰, 南新元, 蔡鑫, 李云鹏, 勾海光. 基于数据增广与改进YOLOv8的桥梁缺陷检测[J]. 广西师范大学学报(自然科学版), 2025, 43(3): 84-97.
[13] 郭翔羽, 石天怡, 陈燕楠, 南新元, 蔡鑫. 基于YOLO-CDBW模型的列车接触网异物检测研究[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 56-69.
[14] 苏春海, 夏海英. 抗噪声双约束网络的面部表情识别[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 70-82.
[15] 刘玉娜, 马双宝. 基于改进YOLOv8n的轻量化织物疵点检测算法[J]. 广西师范大学学报(自然科学版), 2025, 43(2): 83-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10 -22 .
[7] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[8] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[9] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
[10] 施子豪, 蒙祖强, 谈超洪. 基于注意力机制和多尺度融合的多模态虚假新闻检测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 68 -79 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发