广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 10-22.doi: 10.16088/j.issn.1001-6600.2025022702

• 智慧交通 • 上一篇    下一篇

基于D2STGNN的双向高效多尺度交通流预测

黄艳国*, 肖洁, 吴水清   

  1. 江西理工大学 电气工程与自动化学院,江西 赣州 341000
  • 收稿日期:2025-02-27 修回日期:2025-05-17 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 黄艳国(1973—),男,湖北武汉人,江西理工大学教授,博士。E-mail:6920221451@mail.jxust.edu.cn
  • 基金资助:
    国家自然科学基金(72061016)

Bidirectional Efficient Multi-scale Traffic Flow Prediction Based on D2STGNN

HUANG Yanguo*, XIAO Jie, WU Shuiqing   

  1. School of Electrical Engineering and Automation, Jiangxi University of Science and Technology, Ganzhou Jiangxi 341000, China
  • Received:2025-02-27 Revised:2025-05-17 Online:2026-01-05 Published:2026-01-26

摘要: 由于交通流的复杂性和时空特征提取不足,D2STGNN难以捕捉交通网络的动态变化,限制了预测精度提升。本文提出一种高效的多头自注意力机制(EMHSA)和双向门控循环单元(BiGRU)结合的Bi-EMHGRU模型,该模型通过BiGRU捕捉前后时序依赖,并利用多头自注意力机制动态分配各时间步权重,聚焦关键时序特征。同时,引入多尺度时间特征提取模块,增强对短期波动和长期趋势的建模能力,提升复杂时空动态的建模效果。实验结果表明,Bi-EMHGRU在PeMS04和PeMS08数据集上表现优异,均方根误差值下降约0.55~1.55,平均绝对误差下降约0.89~1.40,平均绝对百分比误差下降约0.86~1.77个百分点,预测步长增加时仍能保持稳定的预测性能,泛化能力强。与现有基准模型相比,Bi-EMHGRU能够更有效地捕捉交通流的动态时空特征,显著提升预测精度和鲁棒性。

关键词: 交通流预测, 多头自注意力机制, Bi-EMHGRU, 动态时空特征, 多尺度时间特征

Abstract: Due to the complexity of traffic flow and the insufficient extraction of spatio-temporal features, it is difficult for D2STGNN to capture the dynamic changes of traffic networks, which limits the improvement of prediction accuracy. In this paper, a Bi-EMHGRU model combining an efficient multi-head self-attention mechanism (EMHSA) and a bidirectional gated recurrent unit (BiGRU) is proposed. This model captures the sequential dependencies of both forward and backward timings through BiGRU and dynamically allocates weights to each time step by using the multi-head self-attention mechanism to focus on key sequential features. Meanwhile, a multi-scale time feature extraction module is introduced, which enhances the modeling ability for short-term fluctuations and long-term trends and improves the modeling effect of complex spatio-temporal dynamics. The experimental results show that Bi-EMHGRU performs excellently on the PEMS04 and PEMS08 datasets. The root mean square error value has decreased by approximately 0.55~1.55, the mean absolute error has decreased by approximately 0.89~1.40, and the mean absolute percentage error has decreased by approximately 0.86~1.77 percentage points. It can still maintain stable prediction performance when the prediction step length increases and has strong generalization ability. Compared with the existing benchmark models, Bi-EMHGRU can capture the dynamic spatio-temporal features of traffic flow more effectively and significantly improves the prediction accuracy and robustness.

Key words: traffic flow prediction, multi-head self-attention, Bi-EMHGRU, dynamic spatio-temporal features, multi-scale temporal features

中图分类号:  U49

[1] 刘艺, 游克思, 孙培翔. 智慧城市道路体系架构与发展路径研究[J]. 城市交通, 2024, 22(5): 93-100. DOI: 10.13813/j.cn11-5141/u.2024.0029.
[2] 李玉莲. 基于数据驱动的城市道路交通状态预测研究[D]. 重庆: 重庆交通大学, 2021. DOI: 10.27671/d.cnki.gcjtc.2021.000132.
[3] BOX G E P, JENKINS G M, REINSEL G C, et al. Timeseries analysis: forecasting and control[M]. 5th ed. New York: Wiley, 2008.
[4] 张阳, 王梓良, 姚芳钰, 等.融合滞后极限学习机的IDBiLSTM短时交通流预测[J]. 重庆交通大学学报(自然科学版), 2024, 43(6): 39-46. DOI: 10.3969/j.issn.1674-0696.2024.06.06.
[5] RUMELHART D E, HINTON G E, WILLIAMS R J. Learning representations by back-propagating errors[J]. Nature, 1986, 323(6088): 533-536. DOI: 10.1038/323533a0.
[6] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. DOI: 10.1162/neco.1997.9.8.1735.
[7] CHO K, VAN MERRIENBOER B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Doha, Qatar. Stroudsburg, PA: ACL, 2014: 1724-1734. DOI: 10.3115/v1/d14-1179.
[8] KIPF T N,WELLING M.Semi-supervised classification with graph convolutional networks[EB/OL].(2017-02-22)[2025-10-1]. https://arxiv.org/abs/1609.02907.DOI: 10.48550/arXiv.1609.02907.
[9] GORI M, MONFARDINI G, SCARSELLI F. A new model for learning in graph domains[C]//Proceedings. 2005 IEEE International Joint Conference on Neural Networks,Piscataway,NJ:IEEE,2005: 729-734. DOI: 10.1109/ijcnn.2005.1555942.
[10] 夏英, 刘敏. 基于时空注意力卷积神经网络的交通流量预测[J]. 西南交通大学学报, 2023, 58(2): 340-347. DOI: 10.3969/j.issn.0258-2724.20210526.
[11] 袁华, 陈泽濠. 基于时间卷积神经网络的短时交通流预测算法[J]. 华南理工大学学报(自然科学版), 2020, 48(11): 107-113, 122. DOI: 10.12141/j.issn.1000-565X.190276.
[12] 王博文, 王景升, 朱茵, 等. 基于ARMA-SVR的短时交通流量预测模型研究[J]. 公路交通科技, 2021, 38(11): 126-133. DOI: 10.3969/j.issn.1002-0268.2021.11.015.
[13] 赵文竹, 袁冠, 张艳梅, 等. 多视角融合的时空动态GCN城市交通流量预测[J]. 软件学报, 2024, 35(4): 1751-1773. DOI: 10.13328/j.cnki.jos.007018.
[14] 罗向龙, 郭凰, 廖聪, 等. 时空相关的短时交通流宽度学习预测模型[J]. 计算机工程与应用, 2022, 58(9): 181-186. DOI: 10.3778/j.issn.1002-8331.2011-0204.
[15] YU B,YIN H T,ZHU Z X.Spatio-temporal graph convolutional networks:a deep learning framework for traffic forecasting[C]//Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: IJCAI, 2017:3634-3640.DOI: 10.24963/ijcai.2018/505.
[16] LI Y G, YU R, SHAHABI C, et al.Diffusion convolutional recurrent neural network: data-driven traffic forecasting[EB/OL].(2019-09-15)[2025-03-08]. http://wds.ac.cn/portal/summer2019/paper/13.pdf.
[17] SHAO Z Z, ZHANG Z, WEI W, et al. Decoupled dynamic spatial-temporal graph neural network for traffic forecasting[J]. Proceedings of the VLDB Endowment, 2022, 15(11): 2733-2746. DOI: 10.14778/3551793.3551827.
[18] SCHUSTER M, PALIWAL K K. Bidirectional recurrent neural networks[J]. IEEE Transactions on Signal Processing, 1997, 45(11): 2673-2681. DOI: 10.1109/78.650093.
[19] 刘云翔, 梁智超. 一种高效的连续时序图注意力网络的交通预测模型[J]. 计算机工程, 2025, 51(4): 350-359. DOI: 10.19678/j.issn.1000-3428.0069059.
[20] 张伟, 朱凤华, 陈圆圆, 等. 基于注意力机制和分时图卷积的公交客流预测[J]. 模式识别与人工智能, 2021, 34(2): 167-175. DOI: 10.16451/j.cnki.issn1003-6059.202102008.
[21] 王小博, 张轩, 高张浩, 等. 基于边缘智能的高速公路交通流预测方法[J]. 计算机技术与发展, 2025, 35(4): 193-201. DOI: 10.20165/j.cnki.ISSN1673-629X.2025.0017.
[22] GUO S N, LIN Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). Washington, DC:AAAI, 2019: 922-929. DOI: 10.1609/aaai.v33i01.3301922.
[23] ZHENG C P, FAN X L, WANG C, et al. GMAN: a graph multi-attention network for traffic prediction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 1234-1241. DOI: 10.1609/aaai.v34i01.5477.
[24] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. California:IJCAI,2019:1907-1913. DOI: 10.24963/ijcai.2019/264.
[25] SONG C, LIN Y F, GUO S N, et al. Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921. DOI: 10.1609/aaai.v34i01.5438.
[1] 林培群, 何伙华, 林旭坤. 基于系统关联性的高速公路大中型货车到达量多尺度预测[J]. 广西师范大学学报(自然科学版), 2022, 40(2): 15-26.
[2] 许伦辉, 游黄阳. 基于特性和影响因素分析的短时交通流预测[J]. 广西师范大学学报(自然科学版), 2013, 31(1): 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 刘志豪, 李自立, 苏珉. 智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 23 -32 .
[7] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[8] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[9] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
[10] 施子豪, 蒙祖强, 谈超洪. 基于注意力机制和多尺度融合的多模态虚假新闻检测模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 68 -79 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发