|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 9-19.doi: 10.16088/j.issn.1001-6600.2024051902
唐利1,2, 李梦霞1,2, 黄慧欣1,2, 潘心茹1,2, 姜雪芳1,2, 杨淑君1,2, 潘于1,2, 覃云斌1,2,3*
TANG Li1,2, LI Mengxia1,2, HUANG Huixin1,2, PAN Xinru1,2, JIANG Xuefang1,2, YANG Shujun1,2, PAN Yu1,2, QIN Yunbin1,2,3*
摘要: 球囊霉素相关土壤蛋白(glomalin related soil protein, GRSP)是土壤有机质的重要组分,有加强土壤团聚体水稳定性、促进土壤碳储存等作用。为研究广西北部喀斯特植被恢复过程中GRSP的含量变化及其影响因子,本研究选取桂北喀斯特地区3个不同植被恢复阶段(灌木林阶段、灌乔过渡阶段和乔木林阶段)的根际土、非根际土和农田(对照)土壤作为研究对象,测定总土壤球囊霉素相关土壤蛋白(total glomalin-related soil protein,T-GESP)和易提取球囊霉素相关土壤蛋白(easily extractable glomalin-related soil protein,EE-GRSP)含量,并分析影响GRSP含量变化的关键环境因子。结果表明:各植被恢复阶段根际土中的T-GRSP和EE-GRSP含量均显著高于农田阶段(P<0.05),且T-GRSP含量在乔木林阶段最高。T-GRSP/SOC(土壤有机碳)的比值为4.45%~18.05%,EE-GRSP/SOC 的比值为0.23%~1.35%,农田的T-GRSP/SOC和EE-GRSP/SOC比值均显著高于各植被恢复阶段(P<0.001)。灌乔过渡阶段和乔木林阶段根际土的T-GRSP含量显著高于非根际土(P<0.05)。土壤有机碳和硝态氮含量是引起T-GRSP含量正向变化的关键因素,而土壤全氮、有机碳和微生物生物量氮含量是影响EE-GRSP正向变化的关键因素。因此,桂北喀斯特植被恢复能有效促进GRSP的积累,进而促进SOC的积累与稳定。
中图分类号: S153.621;X171.4
[1] 陈永毕, 熊康宁, 池永宽. 我国南方喀斯特石漠化治理进展[J]. 江苏农业科学, 2019, 47(1): 17-21. DOI: 10.15889/j.issn.1002-1302.2019.01.004. [2] 张婷. 西南地区喀斯特异质生境植物群落特征及其影响因素[D]. 贵阳: 贵州民族大学, 2023. DOI: 10.27807/d.cnki.cgzmz.2023.000582. [3] 罗婷, 黄甫昭, 李健星, 等. 广西漓江流域喀斯特地区植被不同恢复阶段植物优势种叶片和土壤的生态化学计量特征[J]. 植物资源与环境学报, 2024, 33(2): 80-90. DOI: 10.3969/j.issn.1674-7895.2024.02.09. [4] 刘淑娟, 张伟, 王克林, 等. 桂西北典型喀斯特峰丛洼地退耕还林还草的固碳效益评价[J]. 生态学报, 2016, 36(17): 5528-5536. DOI: 10.5846/stxb201503180520. [5] 沙国良, 陈宇轩, 魏天兴, 等. 黄土高原丘陵区典型退耕恢复植被土壤碳分布特征及其影响因素[J]. 土壤, 2022, 54(6): 1265-1272. DOI: 10.13758/j.cnki.tr.2022.06.022. [6] 王维. 植被恢复对喀斯特地区土壤质量的影响研究[J]. 河南水利与南水北调, 2023, 52(7): 113-115. DOI: 10.3969/j.issn.1673-8853.2023.07.062. [7] 许敏. 喀斯特石漠化生境质量与林灌草多样性修复研究[D]. 贵阳: 贵州师范大学, 2019. DOI: 10.27048/d.cnki.ggzsu.2019.000306. [8] 朱兴菲, 刘小芳, 赵勇钢, 等. 晋西黄土区典型人工植被对土壤球囊霉素和团聚体稳定性的影响[J]. 水土保持通报, 2018, 38(6): 80-87. DOI: 10.13961/j.cnki.stbctb.2018.06.013. [9] 甘佳伟, 韩晓增, 邹文秀. 球囊霉素及其在土壤生态系统中的作用[J]. 土壤与作物, 2022, 11(1): 41-53. DOI: 10.11689/j.issn.2095-2961.2022.01.005. [10] WRIGHT S F, UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi[J]. Plant and Soil, 1998, 198(1): 97-107. DOI: 10.1023/A:1004347701584. [11] 胡乐宁, 苏以荣, 何寻阳. 桂西北喀斯特典型土壤的大团聚体分级特征研究[J]. 广西师范大学学报(自然科学版), 2013, 31(3): 213-219. DOI: 10.16088/j.issn.1001-6600.2013.03.008. [12] VASCONCELLOS R L F, BONFIM J A, BARETTA D, et al. Arbuscular mycorrhizal fungi and glomalin-related soil protein as potential indicators of soil quality in a recuperation gradient of theAtlantic forest in Brazil[J]. Land Degradation & Development, 2016, 27(2): 325-334. DOI: 10.1002/ldr.2228. [13] 王建, 周紫燕, 凌婉婷. 球囊霉素相关土壤蛋白的分布及环境功能研究进展[J]. 应用生态学报, 2016, 27(2): 634-642. DOI: 10.13287/j.1001-9332.201602.028. [14] RILLIG M C, WRIGHT S F, NICHOLS K A, et al.Large contribution of arbuscular mycorrhizal fungi to soil carbon pools in tropical forest soils[J]. Plant and soil, 2001, 233(2): 167-177. DOI: 10.1023/A:1010364221169. [15] 曾维军, 刘燕, 秦维, 等. 喀斯特地区不同海拔对油茶根际土壤丛枝菌根真菌物种群落的影响[J]. 山东农业科学, 2024, 56(1): 105-112. DOI: 10.14083/j.issn.1001-4942.2024.01.014. [16] 李涛, 赵之伟. 丛枝菌根真菌产球囊霉素研究进展[J]. 生态学杂志, 2005, 24(9): 1080-1084. DOI: 10.13292/j.1000-4890.2005.0103. [17] BRUNDRETT M C, TEDERSOO L. Evolutionary history of mycorrhizal symbioses and global host plant diversity[J]. New Phytologist, 2018, 220(4): 1108-1115. DOI: 10.1111/nph.14976. [18] WANG Q, MEI D G, CHEN J Y, et al. Sequestration of heavy metal by glomalin-related soil protein:implication for water quality improvement in mangrove wetlands[J]. Water Research, 2019, 148: 142-152. DOI: 10.1016/j.watres.2018.10.043. [19] ZHANG J, TANG X L, HE X H, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 83: 142-149. DOI: 10.1016/j.soilbio.2015.01.023. [20] HOU H, YAN P X, XIE Q M, et al. Distribution characteristics and influence factors of rhizosphere glomalin-related soil protein in three vegetation types of Helan Mountain, China[J]. Forests, 2022, 13(12): 2092. DOI: 10.3390/f13122092. [21] 高秀兵, 邢丹, 陈瑶, 等. 茶树根际球囊霉素相关土壤蛋白含量及其与土壤因子的关系[J]. 茶叶科学, 2016, 36(2): 191-200. DOI: 10.13305/j.cnki.jts.2016.02.010. [22] 杨满元, 杨宁, 刘慧娟, 等. 衡阳紫色土丘陵坡地不同土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 草地学报, 2020, 28(5): 1260-1265. DOI: 10.11733/j.issn.1007-0435.2020.05.010. [23] 孙向伟, 王晓娟, 陈牧, 等. 生态环境因子对AM真菌孢子形成与分布的作用机制[J]. 草业学报, 2011, 20(1): 214-221. [24] 陈胜仙, 张喜亭, 佘丹琦, 等. 森林植物多样性、树种重要值与土壤理化性质对球囊霉素相关土壤蛋白的影响[J]. 生物多样性, 2022, 30(2): 47-59. DOI: 10.17520/biods.2021115. [25] ZHANG J, LI J, MA L L, et al. Accumulation of glomalin-related soil protein benefits soil carbon sequestration: tropical coastal forest restoration experiences[J]. Land Degradation & Development, 2022, 33(10): 1541-1551. DOI: 10.1002/ldr.4192. [26] 沈育伊, 滕秋梅, 徐广平, 等. 桂林会仙岩溶湿地土地利用方式对球囊霉素相关土壤蛋白分布的影响[J]. 地球学报, 2022, 43(4): 491-501. DOI: 10.3975/cagsb.2022.012701. [27] 郭文, 焦鹏宇, 唐楚珺, 等. 不同林龄杉木根际和非根际土壤矿质养分含量及根际效应[J]. 福建农林大学学报(自然科学版), 2022, 51(4): 533-539. DOI: 10.13323/j.cnki.j.fafu(nat.sci.).2022.04.012. [28] PHILLIPS R P, ERLITZ Y, BIER R, et al.New approach for capturing soluble root exudates in forest soils[J]. Functional Ecology, 2008, 22(6): 990-999. DOI: 10.1111/j.1365-2435.2008.01495.x. [29] BAIS H P, WEIR T L, PERRY L G, et al. The role of root exudates inrhizosphere interactions with plants and other organisms[J]. Annual Review of Plant Biology, 2006, 57: 233-266. DOI: 10.1146/annurev.arplant.57.032905.105159. [30] 滕秋梅, 沈育伊, 徐广平, 等. 桂北喀斯特山区不同植被类型土壤碳库管理指数的变化特征[J]. 生态学杂志, 2020, 39(2): 422-433. DOI: 10.13292/j.1000-4890.202002.007. [31] 王韵, 王克林, 邹冬生, 等. 广西喀斯特地区植被演替对土壤质量的影响[J]. 水土保持学报, 2007, 21(6): 130-134. DOI: 10.3321/j.issn:1009-2242.2007.06.030. [32] 莫燕华, 邹涵, 马姜明, 等. 喀斯特石山不同演替阶段檵木群落土壤温湿度变化[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 122-130. DOI: 10.16088/j.issn.1001-6600.2020033103. [33] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000. [34] KHAN S, ISMAIL M, IBRAR M, et al. The effect of biochar on soil organic matter, total N in soil and plant, nodules, grain yield and biomass of mung bean[J]. Soil & Environment, 2020, 39(1): 87-94. DOI: 10.25252/SE/2020/132088. [35] WRIGHT S F, UPADHYAYA A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi[J]. Soil Science, 1996,161(9): 575-586. [36] 郭曼. 黄土丘陵区土壤质量对植被自然恢复过程的响应与评价[D]. 杨凌: 西北农林科技大学, 2009. [37] 龙家辉, 蓝家程, 姜勇祥. 喀斯特石漠化地区退耕还林对土壤细菌群落的影响[J]. 农技服务, 2020, 37(7): 8-10, 12. [38] 阙弘, 葛阳洋, 康福星, 等. 南京典型利用方式土壤中球囊霉素含量及剖面分布特征[J]. 土壤, 2015, 47(4): 719-724. DOI: 10.13758/j.cnki.tr.2015.04.015. [39] RILLIG M C, WRIGHT S F, EVINER V T. The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: comparing effects of five plant species[J]. Plant and Soil, 2002, 238(2): 325-333. DOI: 10.1023/A:1014483303813. [40] 李扬, 张梦歌, 王震, 等. 耕作和秸秆还田对球囊霉素和土壤生态化学计量特征的影响[J]. 山东农业科学, 2024, 56(2): 118-123. DOI: 10.14083/j.issn.1001-4942.2024.02.016. [41] 孙兴宇. 小兴安岭不同时期采伐干扰背景下的球囊霉素动态[D]. 哈尔滨: 黑龙江大学, 2022. [42] 徐其静, 侯磊, 汪丽, 等. 等高反坡阶措施下坡耕地球囊霉素相关土壤蛋白对土壤碳氮储量的贡献[J]. 生态学报, 2024, 44(7): 2919-2930. DOI: 10.20103/j.stxb.202304280893. [43] 彭思利, 申鸿, 郭涛. 接种丛枝菌根真菌对土壤水稳性团聚体特征的影响[J]. 植物营养与肥料学报, 2010, 16(3): 695-700. [44] ZHANG J, TANG X L, ZHONG S Y, et al. Recalcitrant carbon components in glomalin-related soil protein facilitate soil organic carbon preservation in tropical forests[J]. Scientific Reports, 2017, 7(1): 2391. DOI: 10.1038/s41598-017-02486-6. [45] 刘佩雯, 覃云斌, 莫慧婷, 等. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. DOI: 10.16088/j.issn.1001-6600.2023031303. [46] GU R, XIAO K C, ZHU Z H, et al. Afforestation enhances glomalin-related soil protein content but decreases its contribution to soil organic carbon in a subtropical karst area[J]. Journal of Environmental Management, 2024, 356: 120754. DOI: 10.1016/j.jenvman.2024.120754. [47] 张贵云. 不同农业措施对丛枝菌根真菌群落结构和侵染效应的影响[D]. 南京: 南京林业大学, 2013. DOI: 10.7666/d.Y2528573. [48] LI T T, YUAN Y, MOU Z J, et al. Faster accumulation and greater contribution of glomalin to the soil organic carbon pool than amino sugars do under tropical coastal forest restoration[J]. Global Change Biology, 2023, 29(2): 533-546. DOI: 10.1111/gcb.16467. [49] 张学利, 杨树军, 张百习. 我国林木根际土壤研究进展[J]. 沈阳农业大学学报, 2002, 33(6): 461-465. DOI: 10.3969/j.issn.1000-1700.2002.06.017. [50] 金涛涛, 赵明, 吴佳海, 等. 庐山常绿阔叶林常见树种根际球囊霉素相关土壤蛋白分布特征及其影响因素[J]. 生态学杂志, 2021, 40(9): 2698-2708. DOI: 10.13292/j.1000-4890.202109.009. [51] ROSIER C L, PIOTROWSKI J S, HOYE A T, et al. Intraradical protein and glomalin as a tool for quantifying arbuscular mycorrhizal root colonization[J]. Pedobiologia, 2008, 52(1): 41-50. DOI: 10.1016/j.pedobi.2008.02.002. [52] 王国禧, 王萍, 刘亚龙, 等. 球囊霉素在土壤团聚体中的分布特征及影响因素的Meta分析[J]. 土壤学报, 2024, 61(4): 1147-1155. DOI: 10.11766/trxb202301170024. [53] SUN X Y, XING Y J, YAN G Y, et al. Dynamics of glomalin-related soil protein and soil aggregates during secondary succession in the temperate forest[J]. Catena, 2024, 234: 107602. DOI: 10.1016/j.catena.2023.107602. [54] 黄彬彬, 邢亚娟, 闫国永, 等. 兴安落叶松林球囊霉素相关土壤蛋白含量对年际间模拟氮沉降的响应[J]. 生态环境学报, 2019, 28(3): 446-454. DOI: 10.16258/j.cnki.1674-5906.2019.03.003. [55] 邸涵悦, 郝好鑫, 孙兆祥, 等. 不同演替阶段下球囊霉素相关土壤蛋白对团聚体稳定性的影响[J]. 生态环境学报, 2021, 30(4): 718-725. DOI: 10.16258/j.cnki.1674-5906.2021.04.007. [56] ZHANG J, TANG X L, HE X H, et al. Glomalin-related soil protein responses to elevated CO2 and nitrogen addition in a subtropical forest: potential consequences for soil carbon accumulation[J]. Soil Biology and Biochemistry, 2015, 83: 142-149. DOI: 10.1016/j.soilbio.2015.01.023. [57] 蒲洁, 齐雁冰, 王茵茵, 等. 农牧交错带不同植被群落对土壤微生物量碳氮磷的影响[J]. 干旱地区农业研究, 2015, 33(4): 279-285. DOI: 10.7606/j.issn.1000-7601.2015.04.42. [58] 张梦歌, 石兆勇, 杨梅, 等. 热带山地雨林土壤球囊霉素的分布特征[J]. 生态环境学报, 2020, 29(3): 457-463. DOI: 10.16258/j.cnki.1674-5906.2020.03.004. [59] WANG Q, WANG W J, ZHONG Z L, et al. Variation in glomalin in soil profiles and its association with climatic conditions, shelterbelt characteristics, and soil properties in poplar shelterbelts of Northeast China[J]. Journal of Forestry Research, 2020, 31(1): 279-290. DOI: 10.1007/s11676-019-00909-w. |
[1] | 陈敬忠, 彭靓, 廖小锋, 刘济明, 童炳丽. 米槁根际土壤可培养真菌的促生及拮抗作用研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 20-30. |
[2] | 杨盼, 黄莹, 岑丽捷, 黄丽, 王海苗. 红背山麻杆碳氮磷钾的分布及其计量比特征[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 169-178. |
[3] | 刘佩雯, 覃云斌, 莫慧婷, 周珍辉, 蒙伟明, 黄启祥, 马姜明. 凋落物及根系输入变化对喀斯特地区檵木土壤养分和胞外酶的影响[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 179-191. |
[4] | 王博, 覃芳, 史艳财, 秦惠珍, 邓丽丽, 韦记青. 小花异裂菊根际与非根际微生物功能多样性比较[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 237-246. |
[5] | 张仕艳, 谢强, 黄丽娟, 黄庆, 冯学宇, 苏华龙. 广西灵渠流域青冈栎群落主要种群生态位分析[J]. 广西师范大学学报(自然科学版), 2021, 39(6): 162-173. |
[6] | 张晓晓, 王苗苗, 冯书珍, 邱虎森, 盖爽爽, 赵蕾, 胡亚军, 何寻阳, 陆祖军. 岩性与植被类型对喀斯特土壤AM真菌群落的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 158-167. |
[7] | 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156. |
[8] | 康福丽,朱国政,林钰,胡振兴,邓荫伟,冯玉能,陈胜华,陈付林,刘灵. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112. |
[9] | 黄佳玉, 谈宇, 廖妤婕, 王维生, 王英辉. 丛枝菌根真菌对桉树吸收Cu和Zn的作用研究[J]. 广西师范大学学报(自然科学版), 2013, 31(2): 118-122. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 72
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 46
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |