|
|
广西师范大学学报(自然科学版) ›› 2025, Vol. 43 ›› Issue (1): 20-30.doi: 10.16088/j.issn.1001-6600.2024041001
陈敬忠1,2, 彭靓3, 廖小锋4, 刘济明5, 童炳丽6*
CHEN Jingzhong1,2, PENG Liang3, LIAO Xiaofeng4, LIU Jiming5, TONG Bingli6*
摘要: 为提高珍稀药用植物米槁人工栽培成功率,本研究对从米槁根际分离得到109种真菌的溶磷、解钾、产IAA(吲哚-3-乙酸)、产嗜铁素等潜在促生能力进行筛选评价,寻找高效的米槁幼苗促生方法。采用平板培养法对真菌溶磷、解钾、产IAA及产嗜铁素能力进行评估,对筛选得到同时具有4种促生作用的菌株进行两两对峙,并评估其拮抗作用及酶活性差异。结果表明,仅有44种真菌具有溶磷、解钾、产IAA、产嗜铁素中的一种或多种促生能力,其中Neiria polythalama、Thanatephorus cucumeris、Brunneochlamydosporium cucumeris、Scedosporium boydii以及Gongronella butleri 5种真菌同时具有4种促生能力。5种真菌两两对峙结果显示,仅B. cibotii LD19与S. boydii XL1的对峙没有出现明显拮抗带以及色素带,二者对峙时酶活性有明显的提高;B. ciboti LD19与S. boydii XL1之间不存在明显的拮抗作用且具有较好的促生能力,可成为理想的促生菌株复配方案。
中图分类号: S154.3;S567.19
| [1] RAVELO-ORTEGA G, RAYA-GONZÁLEZ J, LÓPEZ-BUCIO J. Compounds from rhizosphere microbes that promote plant growth[J]. Current Opinion in Plant Biology, 2023, 73: 102336. DOI: 10.1016/j.pbi.2023.102336. [2] KUMAR V, PRASHER I B. Phosphate solubilization and indole-3-acetic acid (IAA) produced by Colletotrichum gloeosporioides and Aspergillus fumigatus strains isolated from the rhizosphere of Dillenia indica L[J]. Folia Microbiologica, 2023, 68(2): 219-229. DOI: 10.1007/s12223-022-01004-0. [3] SYED A, ELGORBAN A M, BAHKALI A H, et al. Metal-tolerant and siderophore producing Pseudomonas fluorescence and Trichoderma spp. improved the growth, biochemical features and yield attributes of chickpea by lowering Cd uptake[J]. Scientific Reports, 2023, 13(1): 4471. DOI: 10.1038/s41598-023-31330-3. [4] 赵山, 李鸿玉, 刘宁, 等. 大果木姜子原植物、同功品种及易混品种的研究[J]. 贵阳中医学院学报, 1990(4): 60-64. DOI: 10.16588/j.cnki.issn1002-1108.1990.04.031. [5] 林亚平, 邱德文. 用均匀设计法优选米槁心乐滴丸的制剂工艺条件[J]. 中国中药杂志, 1995,20(4): 219-220,252. [6] 李天祥. 米槁精油提取与分离及其化学成分的研究[D]. 天津:天津大学, 2004. DOI: 10.7666/d.Y707622. [7] CHEN J Z, HUANG X L, SUN Q W, et al. Bulk soil microbial reservoir or plant recruitment dominates rhizosphere microbial community assembly: evidence from the rare, endangered Lauraceae species Cinmaomum migao[J]. Ecological Indicators, 2023, 148:110071. DOI: 10.1016/j.ecolind.2023.110071. [8] CHEN J Z, HUANG X L, TONG B L, et al. Effects of rhizosphere fungi on the chemical composition of fruits of the medicinal plant Cinnamomum migao endemic to southwestern China[J]. BMC Microbiology, 2021, 21(1): 206. DOI: 10.1186/s12866-021-02216-z. [9] 黄小龙, 唐子燕, 刘济明, 等. 米槁根际微生物群落结构及其与土壤养分相关性[J]. 东北林业大学学报, 2023, 51(10): 92-97, 105. DOI: 10.13759/j.cnki.dlxb.2023.10.012. [10] 彭靓, 陈梦, 廖小锋, 等. 米槁根部内生促生真菌筛选及其促生特性研究[J]. 西北农林科技大学学报(自然科学版), 2023, 51(9): 84-91. DOI: 10.13207/j.cnki.jnwafu.2023.09.009. [11] 詹寿发, 卢丹妮, 毛花英, 等. 2株溶磷、解钾与产IAA的内生真菌菌株的筛选、鉴定及促生作用研究[J]. 中国土壤与肥料, 2017(3): 142-151. DOI: 10.11838/sfsc.20170324. [12] 程诚. 溶铁细菌生物学特性及其溶铁效果的研究[D]. 南京:南京农业大学, 2014. DOI: 10.7666/d.Y2974848. [13] YU L H, ZHANG Y F, WANG Y F, et al. Effects of slow-release nitrogen and urea combined application on soil physicochemical properties and fungal community under total straw returning condition[J]. Environmental Research, 2024, 252(Part 1): 118758. DOI: 10.1016/j.envres.2024.118758. [14] LUO L, TAO G, QIN F X, et al. Phosphate-solubilizing fungi enhances the growth of Brassica chinensis L. and reduces arsenic uptake by reshaping the rhizosphere microbial community[J]. Environmental Science and Pollution Research, 2023, 30(57): 120805-120819. DOI: 10.1007/s11356-023-30359-1. [15] XU Y J, CHEN Z, LI X Y, et al. The mechanism of promoting rhizosphere nutrient turnover for arbuscular mycorrhizal fungi attributes to recruited functional bacterial assembly[J]. Molecular Ecology, 2023, 32(9): 2335-2350. DOI: 10.1111/mec.16880. [16] JIANG J S, WANG Y, YU D, et al. Combined addition of biochar and garbage enzyme improving the humification and succession of fungal community during sewage sludge composting[J]. Bioresource Technology, 2022, 346: 126344. DOI: 10.1016/j.biortech.2021.126344. [17] LIU X Y, HE L H, ZHANG X Y, et al. Bioremediation of petroleum-contaminated saline soil by Acinetobacter baumannii and Talaromyces sp. and functional potential analysis using metagenomic sequencing[J]. Environmental Pollution, 2022, 311: 119970. DOI: 10.1016/j.envpol.2022.119970. [18] ADEDAYO A A, BABALOLA O O. Fungi that promote plant growth in the rhizosphere boost crop growth[J]. Journal of Fungi, 2023, 9(2): 239. DOI: 10.3390/jof9020239. [19] TÜRKÖLMEZ, ÖZER G, DERVIS S. Clonostachys rosea strain ST1140: an endophytic plant-growth-promoting fungus, and its potential use in seedbeds with wheat-grain substrate[J]. Current Microbiology, 2022, 80(1): 36. DOI: 10.1007/s00284-022-03146-3. [20] ATTIA M S, ABDELAZIZ A M, AL-ASKAR A A, et al. Plant growth-promoting fungi as biocontrol tool against Fusarium wilt disease of tomato plant[J]. Journal of Fungi, 2022, 8(8): 775. DOI: 10.3390/jof8080775. [21] KUZIN A, SOLOVCHENKO A, STEPANTSOVA L, et al. Soil fertility management in apple orchard with microbial biofertilizers[J]. E3S Web of Conferences, 2020, 222:03020. DOI: 10.1051/e3sconf/202022203020. [22] OMOMOWO L O, ADEDAYO A A, OMOMOWO O I. Biocontrol potential of rhizospheric fungi from Moringa oleifera, their phytochemicals and secondary metabolite assessment against spoilage fungi of sweet orange (Citrus sinensis)[J]. Asian Journal of Applied Sciences, 2020, 8(1):35-48. DOI: 10.24203/ajas.v8i1.6047. [23] 吴婷婷, 黄路婷, 谢元贵, 等. 不同产地米槁根际菌群多样性及其影响因素[J]. 西北林学院学报, 2023, 38(2): 185-192. DOI: 10.3969/j.issn.1001-7461.2023.02.26. [24] SUN M L, SHI C H, HUANG Y, et al. Effect of disease severity on the structure and diversity of the phyllosphere microbial community in tobacco[J]. Frontiers Microbiology, 2022, 13: 1081576. DOI: 10.3389/fmicb.2022.1081576. [25] YANG X H, GU X, DING J J, et al. Gene expression analysis of resistant and susceptible rice cultivars to sheath blight after inoculation with Rhizoctonia solani[J]. BMC Genomics, 2022, 23(1): 278. DOI: 10.1186/s12864-022-08524-6. [26] 杨扬, 高克祥, 吴岩, 等. 吲哚乙酸跨界信号调节植物与细菌互作[J]. 生物技术通报, 2016, 32(8): 14-21. DOI: 10.13560/j.cnki.biotech.bull.1985.2016.08.003. [27] 郑艳, 戴婧婧, 管玉鑫, 等. 凤丹内生菌的分离鉴定及抑菌活性研究[J]. 中国中药杂志, 2016, 41(1): 45-50. DOI: 10.4268/cjcmm20160109. [28] WANG J, LIAO L R, WANG G L, et al. N-induced root exudates mediate the rhizosphere fungal assembly and affect species coexistence[J]. Science of the Total Environment, 2022, 804: 150148. DOI: 10.1016/j.scitotenv.2021.150148. [29] 谢秋丽, 唐玉娟, 苏厚人, 等. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156. DOI: 10.16088/j.issn.1001-6600.2017.03.019. [30] MALLON C A, POLY F, LE ROUX X, et al. Resource pulses can alleviate the biodiversity-invasion relationship in soil microbial communities[J]. Ecology, 2015,96(4): 915-926. DOI: 10.1890/14-1001.1. [31] 李嘉秋, 王佳堃. 基于生态位理论的瘤胃微生物发酵调控研究进展[J]. 中国畜牧杂志, 2020, 56(12): 1-8. DOI: 10.19556/j.0258-7033.20191213-01. [32] BARBERIS C L, PENA G, CARRANZA C, et al. Effect of indigenous mycobiota on ochratoxin A production by Aspergillus carbonarius isolated from soil: ochratoxin in mixed cultures[J]. Mycotoxin Research, 2014, 30(1): 1-8. DOI: 10.1007/s12550-013-0181-z. [33] RODRIGUEZ ESTRADA A E, HEGEMAN A, KISTLER H C, et al. In vitro interactions between Fusarium verticillioides and Ustilago maydis through real-time PCR and metabolic profiling[J]. Fungal Genetics and Biology, 2011, 48(9): 874-885. DOI: 10.1016/j.fgb.2011.06.006. [34] HUA S S T, BECK J J, SARREAL S B L, et al. The major volatile compound 2-phenylethanol from the biocontrol yeast, Pichia anomala, inhibits growth and expression of aflatoxin biosynthetic genes of Aspergillus flavus[J]. Mycotoxin Research, 2014, 30(2): 71-78. DOI: 10.1007/s12550-014-0189-z. [35] MARÍN S, ALBARED X, RAMOS A J, et al. Impact of environment and interactions of Fusarium verticillioides and Fusarium proliferatum with Aspergillus parasiticus on fumonisin B1 and aflatoxins on maize grain[J]. Journal of the Science of Food and Agriculture, 2001, 81(11): 1060-1068. DOI: 10.1002/jsfa.894. [36] VELLUTI A, MARIN S, BETTUCCI L, et al. The effect of fungal competition on colonization of maize grain by Fusarium moniliforme, F. proliferatum and F. graminearum and on fumonisin B1 and zearalenone formation[J]. International Journal of Food Microbiology, 2000, 59(1/2): 59-66. DOI: 10.1016/S0168-1605(00)00289-0. |
| [1] | 施慧露, 莫燕华, 骆海玉, 马姜明. 檵木乙酸乙酯萃取物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 1-8. |
| [2] | 唐利, 李梦霞, 黄慧欣, 潘心茹, 姜雪芳, 杨淑君, 潘于, 覃云斌. 桂北喀斯特植被恢复对球囊霉素相关土壤蛋白的影响[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 9-19. |
| [3] | 徐紫薇, 邓业成, 骆海玉, 邓志勇, 韦坚芬, 黄玲玉, 甘萍贵. 鸡屎藤内生真菌活性菌株筛选及其抗菌活性物质研究[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 31-38. |
| [4] | 刘铭希, 李奇聪, 冉川, 张丝, 施慧露, 邓志勇, 骆海玉, 邓业成. 柑橘溃疡病菌的分离鉴定及其微生物源抑制剂筛选[J]. 广西师范大学学报(自然科学版), 2025, 43(1): 39-47. |
| [5] | 韦坚芬, 邓志勇, 邓业成, 骆海玉, 蒙思妤, 徐紫薇, 施瑶, 梁文垦. 草珊瑚内生真菌SgG4抗植物病原真菌的活性物质研究[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 175-182. |
| [6] | 肖泽恩, 邹思华, 江娇, 罗海梅, 黄锡山, 刘永宏, 谭振. 木榄内生真菌Penicillium sp. GXIMD00006的次级代谢产物及其降血糖活性研究[J]. 广西师范大学学报(自然科学版), 2023, 41(6): 150-157. |
| [7] | 李奇聪, 陈洁萍, 欧艳绍, 杨树贤, 邓志勇, 骆海玉, 邓业成. 柑橘内生真菌LJZ-Y-11次生代谢产物抑菌活性研究[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 155-163. |
| [8] | 王博, 覃芳, 史艳财, 秦惠珍, 邓丽丽, 韦记青. 小花异裂菊根际与非根际微生物功能多样性比较[J]. 广西师范大学学报(自然科学版), 2022, 40(6): 237-246. |
| [9] | 李本超, 梁艳, 覃小芽, 莫土香, 徐照隆, 李俊, 杨瑞云. 广豆根内生真菌GDG-178代谢产物研究[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 139-143. |
| [10] | 覃玉月, 刘晓波, 徐照隆, 莫土香, 李俊, 杨瑞云. 广豆根内生真菌Xylaria sp. GDGJ-368代谢产物研究[J]. 广西师范大学学报(自然科学版), 2020, 38(5): 71-77. |
| [11] | 张晓晓, 王苗苗, 冯书珍, 邱虎森, 盖爽爽, 赵蕾, 胡亚军, 何寻阳, 陆祖军. 岩性与植被类型对喀斯特土壤AM真菌群落的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 158-167. |
| [12] | 谢秋丽, 唐玉娟, 苏厚人, 李光伟, 李良波, 韦继光, 黄荣韶. 不同株龄田七根际土壤微生物和酶活性变化[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 149-156. |
| [13] | 徐伟锋,姚飞华,梁学锋,郑娜,杨瑞云,李俊. 广豆根内生真菌GDG-180代谢产物研究[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 58-61. |
| [14] | 康福丽,朱国政,林钰,胡振兴,邓荫伟,冯玉能,陈胜华,陈付林,刘灵. AMF对金橘苗根围土壤酶活性及植株生长的影响[J]. 广西师范大学学报(自然科学版), 2017, 35(1): 104-112. |
| [15] | 周德雄, 王歆竹, 徐伟峰, 杨瑞云, 邵长伦, 李俊. 短指软珊瑚Sinularia sp.内生真菌Ta31-2代谢产物研究(Ⅱ)[J]. 广西师范大学学报(自然科学版), 2014, 32(4): 91-95. |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |