广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 143-155.doi: 10.16088/j.issn.1001-6600.2025031402

• 生态环境科学研究 • 上一篇    下一篇

不同钙镉化学计量关系对辣椒生理生化影响研究

颜秋晓1,2, 魏福晓1,2, 林绍霞1,2, 姜阳明1,2, 邓廷飞1,2, 王道平1,2*, 黄冬福3   

  1. 1.贵州省天然产物研究中心,贵州 贵阳 550014;
    2.贵州医科大学 中药功效成分发掘与利用全国重点实验室, 贵州 贵阳 550014;
    3.贵州省辣椒研究所,贵州 贵阳 550025
  • 收稿日期:2025-03-14 修回日期:2025-05-13 出版日期:2026-01-05 发布日期:2026-01-26
  • 通讯作者: 王道平(1979—),男,贵州遵义人,贵州省天然产物研究中心副研究员。E-mail:Wdp-7897@aliyun.com
  • 作者简介:颜秋晓(1989—),女,贵州毕节人,贵州省天然产物研究中心助理研究员,博士。E-mail: yanqxecho@sina.com
  • 基金资助:
    贵州省科技计划项目(黔科合基础-ZK〔2022〕一般299,黔科合基础-ZK〔2022〕一般221);贵州省科技厅中央引导地方科技发展专项(黔科合中引地〔2023〕26号)

Effects of Different Calcium and Cadmium Stoichiometric Relationships on Physiology and Biochemistry in Capsicum annuum L.

YAN Qiuxiao1,2, WEI Fuxiao1,2, LIN Shaoxia1,2, JIANG Yangming1,2, DENG Tingfei1,2, WANG Daoping1,2*, HUANG Dongfu3   

  1. 1. Guizhou Natural Products Research Center, Guiyang Guizhou 550014, China;
    2. National Key Laboratory of Discovery and Utilisation of Efficacy Components of Traditional Chinese Medicine, Guizhou Medical University, Guiyang Guizhou 550014, China;
    3. Guizhou Provincial Chilli Research Institute, Guiyang Guizhou 550025, China
  • Received:2025-03-14 Revised:2025-05-13 Online:2026-01-05 Published:2026-01-26

摘要: 为探索在富钙和高镉背景下,碳酸盐岩地区土壤中不同Ca/Cd比例关系对植物Cd吸收蓄积及其生理生化特征的影响和Ca调控辣椒Cd胁迫的解毒机制,本文采用区域性模拟盆栽试验,分析不同Ca/Cd比对辣椒Cd蓄积特征、生理生化特征的影响。结果表明:Cd协迫下随着辣椒生长,不同Ca/Cd处理对辣椒生长速率影响差异逐渐明显,Ca的增加,叶片光合作用、根活力和生物量显著提高。Ca/Cd比增加促进根系对Cd富集,减少其向茎和叶中转移;同时促进Ca向叶中蓄积,增加了叶中Ca/Cd比,显著增加了抗氧化酶活性(SOD、POD和CAT活性分别增加17%~69%、16%~268%和9%~136%)和脯氨酸含量,而丙二醛和蛋白质羰基含量显著降低。综上,Ca通过增强根对Cd的固定,减少Cd向地上部分的转移过程,并通过增强辣椒的生长发育和抗胁迫能力来调控辣椒Cd耐受性,且这种解毒机制与不同Ca/Cd化学计量密切相关。

关键词: 钙镉比, 辣椒, 镉富集, 生理生化响应, 解毒机制

Abstract: In order to explore the influence mechanism of different Ca/Cd ratios in soil on plant Cd absorption and accumulation and its physiological and biochemical characteristics in carbonate areas with high Ca and Cd background. In this study, the Cd accumulation characteristics, physiological and biochemical characteristics of Capsicum annuum L. (capsicum) were discussed based on different ratios of Ca/Cd in production substrates by using regional simulated pot experiments. The results showed that with the continuous growth of capsicum, the effects of different Ca/Cd treatments on the growth rate of capsicum were gradually obvious, and the photosynthesis, root activity and biomass were significantly improved. The increase of Ca/Cd ratio in the substrate promoted Cd accumulation in roots, reduced Cd transfer to stems and leaves, At the same time, it promoted the accumulation of Ca in leaves, increased the Ca/Cd ratio in leaves, promoted the antioxidant enzyme activity (SOD, POD, and CAT activities increased by 17%-69%, 16%-268%, and 9%-136%, respectively) and proline content of leaves, and the malondialdehyde and protein carbonyls were significantly reduced. In conclusion, Ca regulates Cd tolerance in capsicum by enhancing Cd fixation by roots, reducing the transfer process of Cd to aerial parts, and enhancing growth and development and stress resistance, and this detoxification mechanism is closely related to different Ca/Cd stoichiometry.

Key words: Ca/Cd ratios, Capsicum annuum L., Cd enrichment, physiological and biochemical response, detoxification mechanism

中图分类号:  S641.3

[1] 毛旭. 喀斯特地区碳酸盐岩溶蚀对水稻镉富集的影响研究[D]. 贵阳: 贵州大学, 2022.
[2] QIN Y L, ZHANG F G, XUE S D, et al. Heavy metal pollution and source contributions in agricultural soils developed from karst landform in the southwestern region of China[J]. Toxics, 2022, 10(10): 568. DOI: 10.3390/toxics10100568.
[3] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020, 37(3): 233-239. DOI: 10.3969/j.issn.1000-5943.2020.03.003.
[4] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. DOI: 10.16418/j.issn.1000-3045.2018.02.003.
[5] 曾庆庆. 辣椒种植区土壤重金属污染风险管控类别划分: 以贵州省BZ县为例[D]. 贵阳: 贵州大学, 2020.
[6] LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. DOI: 10.1016/j.envpol.2017.01.087.
[7] ZHANG W E, PAN X J, ZHAO Q, et al. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides[J]. Horticultural Plant Journal, 2021, 7(3): 256-266. DOI: 10.1016/j.hpj.2021.03.003.
[8] SOLENKOVA N V, NEWMAN J D, BERGER J S, et al. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure[J]. American Heart Journal, 2014, 168(6): 812-822. DOI: 10.1016/j.ahj.2014.07.007.
[9] ARMITAGE I M, DRAKENBERG T, REILLY B. Use of (113) Cd NMR to probe the native metal binding sites in metalloproteins: an overview[J]. Metal Ions in Life Sciences, 2013, 11: 117-144. DOI: 10.1007/978-94-007-5179-8_6.
[10] XIN J L. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients[J]. Environmental Pollution, 2024, 348: 123890. DOI: 10.1016/j.envpol.2024.123890.
[11] ZHANG X, XUE W J, ZHANG C B, et al. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant[J]. Journal of Hazardous Materials, 2023, 452: 131342. DOI: 10.1016/j.jhazmat.2023.131342.
[12] ELLER F, BRIX H. Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb[J]. AoB Plants, 2015, 8: plv143. DOI: 10.1093/aobpla/plv143.
[13] CHOONG G, LIU Y, TEMPLETON D M. Interplay of calcium and cadmium in mediating cadmium toxicity[J]. Chemico-Biological Interactions, 2014, 211: 54-65. DOI: 10.1016/j.cbi.2014.01.007.
[14] REN Q T, XU Z Y, XUE Y, et al. Mechanism of calcium signal response to cadmium stress in duckweed[J]. Plant Signaling & Behavior, 2022, 17(1): 2119340. DOI: 10.1080/15592324.2022.2119340.
[15] ZENG L H, ZHU T, GAO Y, et al. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2017, 139: 228-237. DOI: 10.1016/j.ecoenv.2017.01.023.
[16] SINGH U M, METWAL M, SINGH M, et al. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content[J]. Gene, 2015, 566(1): 37-46. DOI: 10.1016/j.gene.2015.04.021.
[17] PERFUS-BARBEOCH L, LEONHARDT N, VAVASSEUR A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. Plant Journal, 2002, 32(4): 539-548. DOI: 10.1046/j.1365-313x.2002.01442.x.
[18] RIVAS-UBACH A, SARDANS J, PÉREZ-TRUJILLO M, et al. Strong relationship between elemental stoichiometry and metabolome in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4181-4186. DOI: 10.1073/pnas.1116092109.
[19] JEYASINGH P D, GOOS J M, THOMPSON S K, et al. Ecological stoichiometry beyond redfield: an ionomic perspective on elemental homeostasis[J]. Frontiers in Microbiology, 2017, 8: 722. DOI: 10.3389/fmicb.2017.00722.
[20] HUANG D L, GONG X M, LIU Y G, et al. Effects of calcium at toxic concentrations of cadmium in plants[J]. Planta, 2017, 245(5): 863-873. DOI: 10.1007/s00425-017-2664-1.
[21] LÓPEZ-CLIMENT M F, ARBONA V, PÉREZ-CLEMENTE R M, et al. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in Citrus plants[J]. Plant Biology, 2014, 16(1): 79-87. DOI: 10.1111/plb.12006.
[22] FARZADFAR S, ZARINKAMAR F, MODARRES-SANAVY S A, et al. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants[J]. Environmental Science and Pollution Research International, 2013, 20(3): 1413-1422. DOI: 10.1007/s11356-012-1181-9.
[23] XU D Y, ZHAO Y, ZHOU H D, et al. Effects of biochar amendment on relieving cadmium stress and reducing cadmium accumulation in pepper[J]. Environmental Science and Pollution Research, 2016, 23(12): 12323-12331. DOI: 10.1007/s11356-016-6264-6.
[24] HUANG Y Y, HUANG B F, SHEN C, et al. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum[J]. Journal of Hazardous Materials, 2022, 432: 128713. DOI: 10.1016/j.jhazmat.2022.128713.
[25] 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 952-959. DOI: 10.13227/j.hjkx.202007003.
[26] 张树珍, 樊卫国. 喀斯特地区野生毛葡萄的钙组分特征及其对高钙环境的适应性分析[J]. 西北植物学报, 2022, 42(10): 1728-1738. DOI: 10.7606/j.issn.1000-4025.2022.10.1728.
[27] 章明奎, 姚玉才, 邱志腾, 等. 中国南方碳酸盐岩发育土壤的成土特点与系统分类[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 54-65. DOI: 10.3785/j.issn.1008-9209.2018.03.281.
[28] YAN Q X, LIN S X, WEI F X, et al. Different stoichiometric ratios of Ca and Cd affect the Cd tolerance of Capsicum annuum L. by regulating the subcellular distribution and chemical forms of Cd[J]. Ecotoxicology and Environmental Safety, 2024, 285: 117089. DOI: 10.1016/j.ecoenv.2024.117089.
[29] 魏福晓, 颜秋晓, 王道平, 等. 辣椒幼苗对镉胁迫的生理生化响应[J]. 云南农业大学学报(自然科学), 2024, 39(6): 121-132. DOI: 10.12101/j.issn.1004-390X(n).202401026.
[30] XIAO X F, CHEN J Z, LIAO X F, et al. Different arbuscular mycorrhizal fungi established by two inoculation methods improve growth and drought resistance of Cinnamomum migao seedlings differently[J]. Biology, 2022, 11(2): 220. DOI: 10.3390/biology11020220.
[31] YAN Q X, LI X Y, XIAO X F, et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): e9091. DOI: 10.1002/ece3.9091.
[32] LUX A, MARTINKA M, VACULÍK M, et al. Root responses to cadmium in the rhizosphere: a review[J]. Journal of Experimental Botany, 2011, 62(1): 21-37. DOI: 10.1093/jxb/erq281.
[33] DONG X X, YANG F, YANG S P, et al. Subcellular distribution and tolerance of cadmium in Canna indica L.[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109692. DOI: 10.1016/j.ecoenv.2019.109692.
[34] FU X P, DOU C M, CHEN Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011, 186(1): 103-107. DOI: 10.1016/j.jhazmat.2010.10.122.
[35] KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+ signals in plant immunity[J]. EMBO Journal, 2022, 41(12): e110741. DOI: 10.15252/embj.2022110741.
[36] CLEMENS S. Safer food through plant science: reducing toxic element accumulation in crops[J]. Journal of Experimental Botany, 2019, 70(20): 5537-5557. DOI: 10.1093/jxb/erz366.
[37] 韩畅, 蒋琪, 覃成, 等. 镉胁迫对辣椒幼苗生长与生理特性的影响[J]. 山东农业大学学报(自然科学版), 2020, 51(5): 810-813. DOI: 10.3969/j.issn.1000-2324.2020.05.005.
[38] HAIDER F U, CAI L Q, COULTER J A, et al. Cadmium toxicity in plants: impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111887. DOI: 10.1016/j.ecoenv.2020.111887.
[39] LUO Q H, CHENG D J, HUANG C, et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats[J]. Molecules, 2019, 24(6): 1139. DOI: 10.3390/molecules24061139.
[40] CHEN H B, TANG X J, WANG T J, et al. Calcium polypeptide mitigates Cd toxicity in rice via reducing oxidative stress and regulating pectin modification[J]. Plant Cell Reports, 2024, 43(7): 163. DOI: 10.1007/s00299-024-03253-4.
[41] CHO S C, CHAO Y Y, KAO C H. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings[J]. Journal of Plant Physiology, 2012, 169(9): 892-898. DOI: 10.1016/j.jplph.2012.02.005.
[42] HU Y Y, LIU C H, WANG R P, et al. Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro[J]. World Journal of Gastroenterology, 2000, 6(3): 402-404. DOI: 10.3748/wjg.v6.i3.402.
[43] SOUSA N A, OLIVEIRA G A L, DE OLIVEIRA A P, et al. Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons[J]. Scientific Reports, 2020, 10(1): 2696. DOI: 10.1038/s41598-020-59665-1.
[44] HU L X, ZHANG Z F, XIANG Z X, et al. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum)[J]. Frontiers in Plant Science, 2016, 7: 179. DOI: 10.3389/fpls.2016.00179.
[45] ASHRAF M, FOOLAD M R. Roles of Glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216. DOI: 10.1016/j.envexpbot.2005.12.006.
[46] DUAN S N, LIU B H, ZHANG Y Y, et al. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J]. BMC Genomics, 2019, 20(1): 257. DOI: 10.1186/s12864-019-5617-1.
[47] LIU H, WANG Q Y, WANG J L, et al. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics[J]. BMC Plant Biology, 2022, 22(1): 445. DOI: 10.1186/s12870-022-03830-3.
[48] CAMEJO D, DEL C MARTÍ M, NICOLÁS E, et al. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus[J]. Physiologia Plantarum, 2007, 131(3): 367-377. DOI: 10.1111/j.1399-3054.2007.00953.x.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘晓娟, 林璐, 胡郁葱, 潘雷. 站点周边用地类型对地铁乘车满意度影响研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 1 -12 .
[2] 韩华彬, 高丙朋, 蔡鑫, 孙凯. 基于HO-CNN-BiLSTM-Transformer模型的风机叶片结冰故障诊断[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 13 -28 .
[3] 陈建国, 梁恩华, 宋学伟, 覃章荣. 基于OCT图像三维重建的人眼房水动力学LBM模拟[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 29 -41 .
[4] 李好, 何冰. 凹槽结构表面液滴弹跳行为研究[J]. 广西师范大学学报(自然科学版), 2025, 43(6): 42 -53 .
[5] 田晟, 赵凯龙, 苗佳霖. 基于改进YOLO11n模型的自动驾驶道路交通检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 1 -9 .
[6] 黄艳国, 肖洁, 吴水清. 基于D2STGNN的双向高效多尺度交通流预测[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 10 -22 .
[7] 刘志豪, 李自立, 苏珉. 智能通信与无人机结合的YOLOv8电动车骑行者头盔佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 23 -32 .
[8] 张竹露, 李华强, 刘洋, 许立雄. 基于Bi-LSTM特征融合和FT-FSL的非侵入式负荷辨识[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 33 -44 .
[9] 王涛, 黎远松, 石睿, 陈慧宁, 侯宪庆. MGDE-UNet:轻量化光伏电池缺陷分割模型[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 45 -55 .
[10] 黄文杰, 罗维平, 陈镇南, 彭志祥, 丁梓豪. 基于YOLO11的轻量化PCB缺陷检测算法研究[J]. 广西师范大学学报(自然科学版), 2026, 44(1): 56 -67 .
版权所有 © 广西师范大学学报(自然科学版)编辑部
地址:广西桂林市三里店育才路15号 邮编:541004
电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发