|
|
广西师范大学学报(自然科学版) ›› 2026, Vol. 44 ›› Issue (1): 143-155.doi: 10.16088/j.issn.1001-6600.2025031402
颜秋晓1,2, 魏福晓1,2, 林绍霞1,2, 姜阳明1,2, 邓廷飞1,2, 王道平1,2*, 黄冬福3
YAN Qiuxiao1,2, WEI Fuxiao1,2, LIN Shaoxia1,2, JIANG Yangming1,2, DENG Tingfei1,2, WANG Daoping1,2*, HUANG Dongfu3
摘要: 为探索在富钙和高镉背景下,碳酸盐岩地区土壤中不同Ca/Cd比例关系对植物Cd吸收蓄积及其生理生化特征的影响和Ca调控辣椒Cd胁迫的解毒机制,本文采用区域性模拟盆栽试验,分析不同Ca/Cd比对辣椒Cd蓄积特征、生理生化特征的影响。结果表明:Cd协迫下随着辣椒生长,不同Ca/Cd处理对辣椒生长速率影响差异逐渐明显,Ca的增加,叶片光合作用、根活力和生物量显著提高。Ca/Cd比增加促进根系对Cd富集,减少其向茎和叶中转移;同时促进Ca向叶中蓄积,增加了叶中Ca/Cd比,显著增加了抗氧化酶活性(SOD、POD和CAT活性分别增加17%~69%、16%~268%和9%~136%)和脯氨酸含量,而丙二醛和蛋白质羰基含量显著降低。综上,Ca通过增强根对Cd的固定,减少Cd向地上部分的转移过程,并通过增强辣椒的生长发育和抗胁迫能力来调控辣椒Cd耐受性,且这种解毒机制与不同Ca/Cd化学计量密切相关。
中图分类号: S641.3
| [1] 毛旭. 喀斯特地区碳酸盐岩溶蚀对水稻镉富集的影响研究[D]. 贵阳: 贵州大学, 2022. [2] QIN Y L, ZHANG F G, XUE S D, et al. Heavy metal pollution and source contributions in agricultural soils developed from karst landform in the southwestern region of China[J]. Toxics, 2022, 10(10): 568. DOI: 10.3390/toxics10100568. [3] 蔡大为, 李龙波, 蒋国才, 等. 贵州耕地主要元素地球化学背景值统计与分析[J]. 贵州地质, 2020, 37(3): 233-239. DOI: 10.3969/j.issn.1000-5943.2020.03.003. [4] 骆永明, 滕应. 我国土壤污染的区域差异与分区治理修复策略[J]. 中国科学院院刊, 2018, 33(2): 145-152. DOI: 10.16418/j.issn.1000-3045.2018.02.003. [5] 曾庆庆. 辣椒种植区土壤重金属污染风险管控类别划分: 以贵州省BZ县为例[D]. 贵阳: 贵州大学, 2020. [6] LI H, LUO N, LI Y W, et al. Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution, 2017, 224: 622-630. DOI: 10.1016/j.envpol.2017.01.087. [7] ZHANG W E, PAN X J, ZHAO Q, et al. Plant growth, antioxidative enzyme, and cadmium tolerance responses to cadmium stress in Canna orchioides[J]. Horticultural Plant Journal, 2021, 7(3): 256-266. DOI: 10.1016/j.hpj.2021.03.003. [8] SOLENKOVA N V, NEWMAN J D, BERGER J S, et al. Metal pollutants and cardiovascular disease: mechanisms and consequences of exposure[J]. American Heart Journal, 2014, 168(6): 812-822. DOI: 10.1016/j.ahj.2014.07.007. [9] ARMITAGE I M, DRAKENBERG T, REILLY B. Use of (113) Cd NMR to probe the native metal binding sites in metalloproteins: an overview[J]. Metal Ions in Life Sciences, 2013, 11: 117-144. DOI: 10.1007/978-94-007-5179-8_6. [10] XIN J L. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients[J]. Environmental Pollution, 2024, 348: 123890. DOI: 10.1016/j.envpol.2024.123890. [11] ZHANG X, XUE W J, ZHANG C B, et al. Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant[J]. Journal of Hazardous Materials, 2023, 452: 131342. DOI: 10.1016/j.jhazmat.2023.131342. [12] ELLER F, BRIX H. Influence of low calcium availability on cadmium uptake and translocation in a fast-growing shrub and a metal-accumulating herb[J]. AoB Plants, 2015, 8: plv143. DOI: 10.1093/aobpla/plv143. [13] CHOONG G, LIU Y, TEMPLETON D M. Interplay of calcium and cadmium in mediating cadmium toxicity[J]. Chemico-Biological Interactions, 2014, 211: 54-65. DOI: 10.1016/j.cbi.2014.01.007. [14] REN Q T, XU Z Y, XUE Y, et al. Mechanism of calcium signal response to cadmium stress in duckweed[J]. Plant Signaling & Behavior, 2022, 17(1): 2119340. DOI: 10.1080/15592324.2022.2119340. [15] ZENG L H, ZHU T, GAO Y, et al. Effects of Ca addition on the uptake, translocation, and distribution of Cd in Arabidopsis thaliana[J]. Ecotoxicology and Environmental Safety, 2017, 139: 228-237. DOI: 10.1016/j.ecoenv.2017.01.023. [16] SINGH U M, METWAL M, SINGH M, et al. Identification and characterization of calcium transporter gene family in finger millet in relation to grain calcium content[J]. Gene, 2015, 566(1): 37-46. DOI: 10.1016/j.gene.2015.04.021. [17] PERFUS-BARBEOCH L, LEONHARDT N, VAVASSEUR A, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. Plant Journal, 2002, 32(4): 539-548. DOI: 10.1046/j.1365-313x.2002.01442.x. [18] RIVAS-UBACH A, SARDANS J, PÉREZ-TRUJILLO M, et al. Strong relationship between elemental stoichiometry and metabolome in plants[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(11): 4181-4186. DOI: 10.1073/pnas.1116092109. [19] JEYASINGH P D, GOOS J M, THOMPSON S K, et al. Ecological stoichiometry beyond redfield: an ionomic perspective on elemental homeostasis[J]. Frontiers in Microbiology, 2017, 8: 722. DOI: 10.3389/fmicb.2017.00722. [20] HUANG D L, GONG X M, LIU Y G, et al. Effects of calcium at toxic concentrations of cadmium in plants[J]. Planta, 2017, 245(5): 863-873. DOI: 10.1007/s00425-017-2664-1. [21] LÓPEZ-CLIMENT M F, ARBONA V, PÉREZ-CLEMENTE R M, et al. Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in Citrus plants[J]. Plant Biology, 2014, 16(1): 79-87. DOI: 10.1111/plb.12006. [22] FARZADFAR S, ZARINKAMAR F, MODARRES-SANAVY S A, et al. Exogenously applied calcium alleviates cadmium toxicity in Matricaria chamomilla L. plants[J]. Environmental Science and Pollution Research International, 2013, 20(3): 1413-1422. DOI: 10.1007/s11356-012-1181-9. [23] XU D Y, ZHAO Y, ZHOU H D, et al. Effects of biochar amendment on relieving cadmium stress and reducing cadmium accumulation in pepper[J]. Environmental Science and Pollution Research, 2016, 23(12): 12323-12331. DOI: 10.1007/s11356-016-6264-6. [24] HUANG Y Y, HUANG B F, SHEN C, et al. Boron supplying alters cadmium retention in root cell walls and glutathione content in Capsicum annuum[J]. Journal of Hazardous Materials, 2022, 432: 128713. DOI: 10.1016/j.jhazmat.2022.128713. [25] 邵晓庆, 贺章咪, 徐卫红. 辣椒果实高中低镉积型对镉的富集、转运特性及在亚细胞分布特点比较[J]. 环境科学, 2021, 42(2): 952-959. DOI: 10.13227/j.hjkx.202007003. [26] 张树珍, 樊卫国. 喀斯特地区野生毛葡萄的钙组分特征及其对高钙环境的适应性分析[J]. 西北植物学报, 2022, 42(10): 1728-1738. DOI: 10.7606/j.issn.1000-4025.2022.10.1728. [27] 章明奎, 姚玉才, 邱志腾, 等. 中国南方碳酸盐岩发育土壤的成土特点与系统分类[J]. 浙江大学学报(农业与生命科学版), 2019, 45(1): 54-65. DOI: 10.3785/j.issn.1008-9209.2018.03.281. [28] YAN Q X, LIN S X, WEI F X, et al. Different stoichiometric ratios of Ca and Cd affect the Cd tolerance of Capsicum annuum L. by regulating the subcellular distribution and chemical forms of Cd[J]. Ecotoxicology and Environmental Safety, 2024, 285: 117089. DOI: 10.1016/j.ecoenv.2024.117089. [29] 魏福晓, 颜秋晓, 王道平, 等. 辣椒幼苗对镉胁迫的生理生化响应[J]. 云南农业大学学报(自然科学), 2024, 39(6): 121-132. DOI: 10.12101/j.issn.1004-390X(n).202401026. [30] XIAO X F, CHEN J Z, LIAO X F, et al. Different arbuscular mycorrhizal fungi established by two inoculation methods improve growth and drought resistance of Cinnamomum migao seedlings differently[J]. Biology, 2022, 11(2): 220. DOI: 10.3390/biology11020220. [31] YAN Q X, LI X Y, XIAO X F, et al. Arbuscular mycorrhizal fungi improve the growth and drought tolerance of Cinnamomum migao by enhancing physio-biochemical responses[J]. Ecology and Evolution, 2022, 12(7): e9091. DOI: 10.1002/ece3.9091. [32] LUX A, MARTINKA M, VACULÍK M, et al. Root responses to cadmium in the rhizosphere: a review[J]. Journal of Experimental Botany, 2011, 62(1): 21-37. DOI: 10.1093/jxb/erq281. [33] DONG X X, YANG F, YANG S P, et al. Subcellular distribution and tolerance of cadmium in Canna indica L.[J]. Ecotoxicology and Environmental Safety, 2019, 185: 109692. DOI: 10.1016/j.ecoenv.2019.109692. [34] FU X P, DOU C M, CHEN Y X, et al. Subcellular distribution and chemical forms of cadmium in Phytolacca americana L.[J]. Journal of Hazardous Materials, 2011, 186(1): 103-107. DOI: 10.1016/j.jhazmat.2010.10.122. [35] KÖSTER P, DEFALCO T A, ZIPFEL C. Ca2+ signals in plant immunity[J]. EMBO Journal, 2022, 41(12): e110741. DOI: 10.15252/embj.2022110741. [36] CLEMENS S. Safer food through plant science: reducing toxic element accumulation in crops[J]. Journal of Experimental Botany, 2019, 70(20): 5537-5557. DOI: 10.1093/jxb/erz366. [37] 韩畅, 蒋琪, 覃成, 等. 镉胁迫对辣椒幼苗生长与生理特性的影响[J]. 山东农业大学学报(自然科学版), 2020, 51(5): 810-813. DOI: 10.3969/j.issn.1000-2324.2020.05.005. [38] HAIDER F U, CAI L Q, COULTER J A, et al. Cadmium toxicity in plants: impacts and remediation strategies[J]. Ecotoxicology and Environmental Safety, 2021, 211: 111887. DOI: 10.1016/j.ecoenv.2020.111887. [39] LUO Q H, CHENG D J, HUANG C, et al. Improvement of colonic immune function with soy isoflavones in high-fat diet-induced obese rats[J]. Molecules, 2019, 24(6): 1139. DOI: 10.3390/molecules24061139. [40] CHEN H B, TANG X J, WANG T J, et al. Calcium polypeptide mitigates Cd toxicity in rice via reducing oxidative stress and regulating pectin modification[J]. Plant Cell Reports, 2024, 43(7): 163. DOI: 10.1007/s00299-024-03253-4. [41] CHO S C, CHAO Y Y, KAO C H. Calcium deficiency increases Cd toxicity and Ca is required for heat-shock induced Cd tolerance in rice seedlings[J]. Journal of Plant Physiology, 2012, 169(9): 892-898. DOI: 10.1016/j.jplph.2012.02.005. [42] HU Y Y, LIU C H, WANG R P, et al. Protective actions of salvianolic acid A on hepatocyte injured by peroxidation in vitro[J]. World Journal of Gastroenterology, 2000, 6(3): 402-404. DOI: 10.3748/wjg.v6.i3.402. [43] SOUSA N A, OLIVEIRA G A L, DE OLIVEIRA A P, et al. Novel ocellatin peptides mitigate LPS-induced ROS formation and NF-kB activation in microglia and hippocampal neurons[J]. Scientific Reports, 2020, 10(1): 2696. DOI: 10.1038/s41598-020-59665-1. [44] HU L X, ZHANG Z F, XIANG Z X, et al. Exogenous application of citric acid ameliorates the adverse effect of heat stress in tall fescue (Lolium arundinaceum)[J]. Frontiers in Plant Science, 2016, 7: 179. DOI: 10.3389/fpls.2016.00179. [45] ASHRAF M, FOOLAD M R. Roles of Glycine betaine and proline in improving plant abiotic stress resistance[J]. Environmental and Experimental Botany, 2007, 59(2): 206-216. DOI: 10.1016/j.envexpbot.2005.12.006. [46] DUAN S N, LIU B H, ZHANG Y Y, et al. Genome-wide identification and abiotic stress-responsive pattern of heat shock transcription factor family in Triticum aestivum L.[J]. BMC Genomics, 2019, 20(1): 257. DOI: 10.1186/s12864-019-5617-1. [47] LIU H, WANG Q Y, WANG J L, et al. Key factors for differential drought tolerance in two contrasting wild materials of Artemisia wellbyi identified using comparative transcriptomics[J]. BMC Plant Biology, 2022, 22(1): 445. DOI: 10.1186/s12870-022-03830-3. [48] CAMEJO D, DEL C MARTÍ M, NICOLÁS E, et al. Response of superoxide dismutase isoenzymes in tomato plants (Lycopersicon esculentum) during thermo-acclimation of the photosynthetic apparatus[J]. Physiologia Plantarum, 2007, 131(3): 367-377. DOI: 10.1111/j.1399-3054.2007.00953.x. |
| No related articles found! |
|
|
版权所有 © 广西师范大学学报(自然科学版)编辑部 地址:广西桂林市三里店育才路15号 邮编:541004 电话:0773-5857325 E-mail: gxsdzkb@mailbox.gxnu.edu.cn 本系统由北京玛格泰克科技发展有限公司设计开发 |