Journal of Guangxi Normal University(Natural Science Edition) ›› 2026, Vol. 44 ›› Issue (1): 68-79.doi: 10.16088/j.issn.1001-6600.2024122004
• Intelligence Information Processing • Previous Articles Next Articles
SHI Zihao1, MENG Zuqiang1*, TAN Chaohong2
| [1] MA J, GAO W, MITRA P, et al. Detecting rumors from microblogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI-16). Menlo Park, CA: AAAI Press, 2016: 3818-3824. [2] YU F, LIU Q, WU S, et al. A convolutional approach for misinformation identification[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI-17). Menlo Park, CA: AAAI Press, 2017: 3901-3907. DOI: 10.24963/ijcai.2017/545. [3] MA J, GAO W, WONG K F. Detect rumors on twitter by promoting information campaigns with generative adversarial learning[C]//The World Wide Web Conference. New York, NY: Association for Computing Machinery, 2019: 3049-3055. DOI: 10.1145/3308558.3313741. [4] VAIBHAV V, MANDYAM R, HOVY E. Do sentence interactions matter? Leveraging sentence level representations for fake news classification[C]//Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13). Stroudsburg, PA: Association for Computational Linguistics, 2019: 134-139. DOI: 10.18653/v1/D19-5316. [5] QI P, CAO J, YANG T Y, et al. Exploiting multi-domain visual information for fake news detection[C]//2019 IEEE International Conference on Data Mining (ICDM). Los Alamitos, CA: IEEE Computer Society, 2019: 518-527. DOI: 10.1109/ICDM.2019.00062. [6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2024-12-20]. https://arxiv.org/abs/1409.1556. DOI: 10.48550/arXiv.1409.1556. [7] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90. [8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. (2017-06-12)[2024-12-20]. https://arxiv.org/abs/1706.03762. DOI: 10.48550/arXiv.1706.03762. [9] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg, PA: Association for Computational Linguistics, 2019: 4171-4186. DOI: 10.18653/v1/N19-1423. [10] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: transformers for image recognition at scale[EB/OL]. (2020-10-22)[2024-12-20]. https://arxiv.org/abs/2010.11929. DOI: 10.48550/arXiv.2010.11929. [11] 亓鹏, 曹娟, 盛强. 语义增强的多模态虚假新闻检测[J]. 计算机研究与发展, 2021, 58(7): 1456-1465. DOI: 10.7544/issn1000-1239.2021.20200804. [12] 戚力鑫, 万书振, 唐斌, 等. 基于注意力机制的多模态融合谣言检测方法[J]. 计算机工程与应用, 2022, 58(19): 209-217. DOI: 10.3778/j.issn.1002-8331.2102-0229. [13] 袁玥, 刘永彬, 欧阳纯萍, 等. 基于一对多关系的多模态虚假新闻检测[J]. 中文信息学报, 2023, 37(9): 131-139. DOI: 10.3969/j.issn.1003-0077.2023.09.017. [14] 王旭阳, 王常瑞, 张金峰, 等. 基于跨模态交叉注意力网络的多模态情感分析方法[J]. 广西师范大学学报(自然科学版), 2024, 42(2): 84-93. DOI: 10.16088/j.issn.1001-6600.2023052701. [15] 吴聪, 孟敏智, 郑炜, 等. 基于生成对抗网络和对比学习的假新闻检测方法研究[J]. 网络空间安全科学学报, 2024, 2(3): 27-40. DOI: 10.20172/j.issn.2097-3136.240303. [16] 乔禹涵, 贾彩燕. 基于图自监督对比学习的社交媒体谣言检测[J]. 南京大学学报(自然科学), 2023, 59(5): 823-832. DOI: 10.13232/j.cnki.jnju.2023.05.010. [17] 张明道, 周欣, 吴晓红, 等. 基于语义扩充和HDGCN的虚假新闻联合检测技术[J]. 计算机科学, 2024, 51(4): 299-306. DOI: 10.11896/jsjkx.230700170. [18] 韩晓鸿, 赵梦凡, 张钰涛. 联合异质图卷积网络和注意力机制的假新闻检测[J]. 小型微型计算机系统, 2024, 45(2): 301-308. DOI: 10.20009/j.cnki.21-1106/TP.2022-0412. [19] 吴娇, 汪可馨, 许锟. 融合多模态的虚假新闻检测[J]. 哈尔滨商业大学学报(自然科学版), 2023, 39(1): 47-52. DOI: 10.19492/j.cnki.1672-0946.2023.01.011. [20] WANG Y Q, MA F L, JIN Z W, et al. EANN: event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, NY: Association for Computing Machinery, 2018: 849-857. DOI: 10.1145/3219819.3219903. [21] SINGHAL S, SHAH R R, CHAKRABORTY T, et al. SpotFake: a multi-modal framework for fake news detection[C]//2019 IEEE Fifth International Conference on Multimedia Big Data (BigMM). Los Alamitos, CA: IEEE Computer Society, 2019: 39-47. DOI: 10.1109/BigMM.2019.00-44. [22] 刘金硕, 冯阔, PAN J Z, 等. MSRD: 多模态网络谣言检测方法[J]. 计算机研究与发展, 2020, 57(11): 2328-2336. DOI: 10.7544/issn1000-1239.2020.20200413. [23] JIN Z W, CAO J, GUO H, et al. Multimodal fusion with recurrent neural networks for rumor detection on microblogs[C]//Proceedings of the 25th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2017: 795-816. DOI: 10.1145/3123266.3123454. [24] 周昊玮, 刘勇, 玄萍. 基于预训练和多模态融合的假新闻检测[J]. 计算机工程, 2024, 50(1): 289-295. DOI: 10.19678/j.issn.1000-3428.0066412. [25] XUE J X, WANG Y B, TIAN Y C, et al. Detecting fake news by exploring the consistency of multimodal data[J]. Information Processing & Management, 2021, 58(5): 102610. DOI: 10.1016/j.ipm.2021.102610. [26] QIAN S S, WANG J G, HU J, et al. Hierarchical multi-modal contextual attention network for fake news detection[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, NY: Association for Computing Machinery, 2021: 153-162. DOI: 10.1145/3404835.3462871. [27] QI P, CAO J, LI X R, et al. Improving fake news detection by using an entity-enhanced framework to fuse diverse multimodal clues[C]//Proceedings of the 29th ACM International Conference on Multimedia. New York, NY: Association for Computing Machinery, 2021: 1212-1220. DOI: 10.1145/3474085.3481548. [28] WU Y, ZHAN P W, ZHANG Y J, et al. Multimodal fusion with co-attention networks for fake news detection[C]//Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021. Stroudsburg, PA: Association for Computational Linguistics, 2021: 2560-2569. DOI: 10.18653/v1/2021.findings-acl.226. [29] CHEN Y X, LI D S, ZHANG P, et al. Cross-modal ambiguity learning for multimodal fake news detection[C]//Proceedings of the ACM Web Conference 2022. New York, NY: Association for Computing Machinery, 2022: 2897-2905. DOI: 10.1145/3485447.3511968. [30] 彭广川, 吴飞, 韩璐, 等. 基于跨模态交互与特征融合网络的假新闻检测方法[J]. 计算机科学, 2024, 51(11): 23-29. DOI: 10.11896/jsjkx.231200186. [31] 刘华玲, 陈尚辉, 曹世杰, 等. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. DOI: 10.3778/j.issn.1673-9418.2301064. [32] TAN H, BANSAL M. Lxmert: learning cross-modality encoder representations from transformers[EB/OL]. (2019-08-20)[2024-12-20]. https://arxiv.org/abs/1908.07490. DOI: 10.48550/arXiv.1908.07490. [33] QI D, SU L, SONG J, et al. Imagebert: cross-modal pre-training with large-scale weak-supervised image-text data[EB/OL]. (2020-01-22)[2024-12-20]. https://arxiv.org/abs/2001.07966. DOI: 10.48550/arXiv.2001.07966. [34] RADFORD A, KIM J W, HALLACY C, et al. Learning transferable visual models from natural language supervision[EB/OL]. (2021-02-26)[2024-12-20]. https://arxiv.org/abs/2103.00020. DOI: 10.48550/arXiv.2103.00020. [35] ZHOU Y M, YANG Y Z, YING Q C, et al. Multimodal fake news detection via CLIP-guided learning[C]//2023 IEEE International Conference on Multimedia and Expo (ICME). Los Alamitos, CA: IEEE Computer Society, 2023: 2825-2830. DOI: 10.1109/ICME55011.2023.00480. [36] ZHOU Y M, YANG Y Z, YING Q C, et al. Multi-modal fake news detection on social media via multi-grained information fusion[C]//Proceedings of the 2023 ACM International Conference on Multimedia Retrieval. New York, NY: Association for Computing Machinery, 2023: 343-352. DOI: 10.1145/3591106.3592271. [37] WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 11531-11539. DOI: 10.1109/CVPR42600.2020.01155. [38] YANG A, PAN J S, LIN J Y, et al. Chinese clip: contrastive vision-language pretraining in chinese[EB/OL]. (2022-11-02)[2024-12-20]. https://arxiv.org/abs/2211.01335. DOI: 10.48550/arXiv.2211.01335. [39] YANG Y, ZHENG L, ZHANG J W, et al. TI-CNN: convolutional neural networks for fake news detection[EB/OL]. (2018-01-03)[2024-12-20]. https://arxiv.org/abs/1806.00749. DOI: 10.48550/arXiv.1806.00749. [40] ZHANG B C, ZHANG P, DONG X Y, et al. Long-CLIP: unlocking the long-text capability of CLIP[C]//Computer Vision-ECCV 2024: LNCS Volume 15109. Cham: Springer Nature Switzerland AG, 2025: 310-325. DOI: 10.1007/978-3-031-72983-6_18. [41] PASZKE A, GROSS S, MASSA F, et al. PyTorch: an imperative style, high-performance deep learning library[C]//Advances in Neural Information Processing Systems 32 (NeurIPS 2019). Red Hook, NY: Curran Associates, Inc., 2019: 8026-8037. [42] ZHU Y Y, LI Y J, WANG J L, et al. FaKnow: a unified library for fake news detection[EB/OL]. (2024-01-27)[2024-12-20]. https://arxiv.org/abs/2401.16441. DOI: 10.48550/arXiv.2401.16441. [43] LAURENS VAN DER M, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(86): 2579-2605. [44] YE X J. Calflops: a FLOPs and Params calculate tool for neural networks in pytorch framework[EB/OL]. (2023-08-20)[2024-12-20]. https://github.com/MrYxJ/calculate-flops.pytorch. |
| [1] | LIU Zhihao, LI Zili, SU Min. YOLOv8-based Helmet Detection Method for Electric Vehicle Riders Combining Intelligent Communication and UAV-Assistance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 23-32. |
| [2] | HUANG Qi, LI Bixin, WANG Mingwen, XIAO Cong, LIU Jing, LOU Wenbing. Fake News Detection with Integrated Emotional Knowledge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 80-90. |
| [3] | WANG Xuyang, MA Jin. Cross-modal Feature Enhancement and Hierarchical MLP Communication for Multimodal Sentiment Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2026, 44(1): 91-101. |
| [4] | LI Fengwei, TAN Yumei, SONG Shuxiang, XIA Haiying. Occlusion-Aware Facial Expression Recognition Based on Attention Guidance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(5): 104-113. |
| [5] | TIAN Sheng, XIONG Chenyin, LONG Anyang. Point Cloud Classification Method of Urban Roads Based on Improved PointNet++ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 1-14. |
| [6] | HAN Shuo, JIANG Linfeng, YANG Jianbin. Attention-based PINNs Method for Solving Saint-Venant Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 58-68. |
| [7] | SHI Tianyi, NAN Xinyuan, GUO Xiangyu, ZHAO Pu, CAI Xin. Improved ConvNeXt-based Algorithm for Apple Leaf Disease Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(4): 83-96. |
| [8] | LU Zhanyue, CHEN Yanping, YANG Weizhe, HUANG Ruizhang, QIN Yongbin. Relational Extraction Method Based on Mask Attention and Multi-feature Convolutional Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(3): 12-22. |
| [9] | GUO Xiangyu, SHI Tianyi, CHEN Yannan, NAN Xinyuan, CAI Xin. Research on Foreign Object Detection in Railway Overhead Contact System Based on YOLO-CDBW Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 56-69. |
| [10] | SU Chunhai, XIA Haiying. Facial Expression Recognition Based on Noise-Resistant Dual Constraint Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 70-82. |
| [11] | LIU Yuna, MA Shuangbao. Fabric Defect Detection Based on Improved Lightweight YOLOv8n [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 83-94. |
| [12] | DAI Linhua, LI Yuansong, SHI Rui, HE Zhongliang, LI Lei. HSED-YOLO: A Lightweight Model for Detecting Surface Defects in Strip Steel [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 95-106. |
| [13] | YU Kuai, SONG Baogui, SHAO Pan, YU Ao. Hierarchical-scale Interaction-based U-Net for Remote Sensing Image Building Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(2): 121-132. |
| [14] | LU Jiahui, CHEN Qingfeng, WANG Wenguang, YU Qian, HE Naixu, HAN Zongzhao. Multi-scale Attention Learning for Abdomen Multi-organ Image Segmentation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(6): 138-148. |
| [15] | DU Shuaiwen, JIN Ting. A Deep Hybrid Recommendation Algorithm Based on User Behavior Characteristics [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(5): 91-100. |
|