Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 42-53.doi: 10.16088/j.issn.1001-6600.2024122402

• Physical and Electronic Engineering • Previous Articles     Next Articles

Droplet Rebound Behavior on Grooves Surface

LI Hao, HE Bing*   

  1. School of Computer Science and Engineering, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2024-12-24 Revised:2025-03-27 Published:2025-11-19

Abstract: The understanding of droplet bouncing behavior, which attracts widespread attention, has played a significant role in guiding technologies such as inkjet printing, drug delivery, and microfluidics. The wetting gradient formed by grooved surfaces with varying spacing causes droplets to exhibit complex bouncing behaviors in different directions. Numerical simulations are employed to study this phenomenon. In this work, the Lattice Boltzmann method based on the chemical potential model is used to model and to compare the bouncing behaviors of droplets impacting surfaces with both uniform and gradient-spaced grooves. The droplet’s contact angle, contact line, forces, internal momentum, and velocity vectors during the bouncing process are analyzed to investigate the causes of reverse bouncing. The results indicate that the droplet undergoes a series of asymmetric deformations on the asymmetric groove. When the Weber number of the droplet is 42.4, the droplet completes spreading and tends to bounce along the wettability gradient toward the hydrophilic direction after contraction. However, when the Weber number increases to 117.8, the liquid penetrates deeper into the groove, and the asymmetry becomes more pronounced. This leads to the pinning of the right contact line, and the resulting hysteresis force causes part of the droplet on the interface to contract and shift its center of mass to the right. Consequently, the droplet rebounds against the surface wetting gradient. This study provides insights for the design of microstructured surfaces that manipulate droplet motion.

Key words: lattice Boltzmann method, numerical simulation, heterogeneous surfaces, wettability, droplet bouncing

CLC Number:  O35
[1] XU W H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396. DOI: 10.1038/s41586-020-1985-6.
[2] GE P, WANG S L, ZHANG J H, et al. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications[J]. Materials Horizons, 2020, 7(10): 2566-2595. DOI: 10.1039/D0MH00768D.
[3] DING Y, HOWES P D, DE MELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149. DOI: 10.1021/acs.analchem.9b05047.
[4] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. DOI: 10.1039/b612667g.
[5] WANG L X, ZHOU Q. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid[J]. Scientific Reports, 2016, 6: 19907. DOI: 10.1038/srep19907.
[6] ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. DOI: 10.1038/nature08729.
[7] MAYAMA H. Secret of Lotus leaf: importance of double roughness structures for super water-repellency[J]. Journal of Photopolymer Science and Technology, 2018, 31(6): 705-710. DOI: 10.2494/photopolymer.31.705.
[8] LI Y X, CUI Z H, LI G Q, et al. Directional and adaptive oil self-transport on a multi-bioinspired grooved conical spine[J]. Advanced Functional Materials, 2022, 32(27): 2201035. DOI: 10.1002/adfm.202201035.
[9] TANG X, TIAN Y, TIAN X W, et al. Design of multi-scale textured surfaces for unconventional liquid harnessing[J]. Materials Today, 2021, 43: 62-83. DOI: 10.1016/j.mattod.2020.08.013.
[10] HU Z F, CHU F Q, SHAN H, et al. Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond[J]. Advanced Materials, 2024, 36(11): 2310177. DOI: 10.1002/adma. 202310177.
[11] QIAN L J, HUO B J, CHEN Z L, et al. Droplet bouncing on moving superhydrophobic groove surfaces[J]. International Journal of Multiphase Flow, 2023, 165: 104454. DOI: 10.1016/j.ijmultiphaseflow.2023.104454.
[12] SONG J L, GAO M Q, ZHAO C L, et al. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J]. ACS Nano, 2017, 11(9): 9259-9267. DOI: 10.1021/acsnano.7b04494.
[13] VAIKUNTANATHAN V, KANNAN R, SIVAKUMAR D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369(1/2/3): 65-74. DOI: 10.1016/j.colsurfa.2010.07.034.
[14] VAIKUNTANATHAN V, SIVAKUMAR D. Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture[J]. Langmuir, 2016, 32(10): 2399-2409. DOI: 10.1021/acs.langmuir.5b04639.
[15] TAO R, LIANG G Q, DOU B H, et al. Oblique pancake bouncing[J]. Cell Reports Physical Science, 2022, 3(1): 100721. DOI: 10.1016/j.xcrp.2021.100721.
[16] YADA S, BAGHERI S, HANSSON J, et al. Droplet leaping governs microstructured surface wetting[J]. Soft Matter, 2019, 15(46): 9528-9536. DOI: 10.1039/c9sm01854a.
[17] ZHANG B, LEI Q, WANG Z K, et al. Droplets can rebound toward both directions on textured surfaces with a wettability gradient[J]. Langmuir, 2016, 32(1): 346-351. DOI: 10.1021/acs.langmuir.5b04365.
[18] ZHAO J Y, CHEN S. Following or against topographic wettability gradient: movements of droplets on a micropatterned surface[J]. Langmuir, 2017, 33(21): 5328-5335. DOI: 10.1021/acs.langmuir.7b00438.
[19] YUN S. Ellipsoidal drop impact on a single-ridge superhydrophobic surface[J]. International Journal of Mechanical Sciences, 2021, 208: 106677. DOI: 10.1016/j.ijmecsci.2021.106677.
[20] ZHAO J Y, CHEN S, LIU Y. Spontaneous wetting transition of droplet coalescence on immersed micropillared surfaces[J]. Applied Mathematical Modelling, 2018, 63: 390-404. DOI: 10.1016/j.apm.2018.06.041.
[21] YUAN Z C, MATSUMOTO M, KUROSE R. Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients[J]. International Journal of Multiphase Flow, 2021, 138: 103611. DOI: 10.1016/j.ijmultiphaseflow.2021.103611.
[22] YUAN Z C, MATSUMOTO M, KUROSE R. Numerical study of droplet impingement on surfaces with hierarchical structures[J]. International Journal of Multiphase Flow, 2022, 147: 103908. DOI: 10.1016/j.ijmultiphaseflow.2021.103908.
[23] 张建民, 何小泷. 格子玻尔兹曼方法在多相流中的应用[C] //第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 长春, 2017: 93-110.
[24] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364. DOI: 10.1146/annurev.fluid.30.1.329.
[25] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472. DOI: 10.1146/annurev-fluid-121108-145519.
[26] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method[J]. Springer International Publishing, 2017, 10(978-3): 4-15.
[27] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165.
[28] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95: 063305. DOI: 10.1103/PhysRevE.95.063305.
[29] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[30] ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of Computational Physics, 2006, 218(1): 353-371. DOI: 10.1016/j.jcp.2006.02.015.
[31] WEN B H, QIN Z R, ZHANG C Y, et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters), 2015, 112(4): 44002. DOI: 10.1209/0295-5075/112/44002.
[32] 闻炳海, 张超英, 方海平. 晶格Boltzmann方法中流体力的计算[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 070012. DOI: 10.1360/SSPMA2016-00404.
[33] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763.
[34] 刘阳莎. 基于晶格Boltzmann方法的曲面接触角测量算法研究[D]. 桂林: 广西师范大学, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.001941.
[35] CHEN L, KANG Q J, MU Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. DOI: 10.1016/j.ijheatmasstransfer.2014.04.032.
[36] GUO C F, ZHAO D Y, SUN Y J, et al. Droplet impact on anisotropic superhydrophobic surfaces[J]. Langmuir, 2018, 34(11): 3533-3540. DOI: 10.1021/acs.langmuir.7b03752.
[37] WANG S, LI H L, DUAN H, et al. Directed motion of an impinging water droplet: seesaw effect[J]. Journal of Materials Chemistry A, 2020, 8(16): 7889-7896. DOI: 10.1039/D0TA00037J.
[1] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29-41.
[2] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54-68.
[3] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128-139.
[4] LI Ruotong, ZHONG Xingguo, LIU Qilin, WEN Binghai. Free-Energy-Density Model Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 90-99.
[5] ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139.
[6] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44-53.
[7] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[8] HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81.
[9] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[10] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[11] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[12] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[13] CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21.
[14] LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63.
[15] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Xiaojuan, LIN Lu, HU Yucong, PAN Lei. Research on the Influence of Land Use Types Surrounding Stations on Subway Passenger Satisfaction[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 1 -12 .
[2] HAN Huabin, GAO Bingpeng, CAI Xin, SUN Kai. Fault Diagnosis of Wind Turbine Blade Icing Based on HO-CNN-BiLSTM-Transformer Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 13 -28 .
[3] CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29 -41 .
[4] LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54 -68 .
[5] XIE Sheng, MA Haifei, ZHANG Canlong, WANG Zhiwen, WEI Chunrong. Multi-resolution Feature Grounding for Cross-Modal Person Retrieval[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 69 -79 .
[6] WEI Zishu, CHEN Zhigang, WANG Yanxue, Hasitieer Madetihan. Lightweight Bearing Defect Detection Algorithm Based on SBSI-YOLO11[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 80 -91 .
[7] YI Jianbing, HU Yayi, CAO Feng, LI Jun, PENG Xin, CHEN Xin. Design of Lightweight Pulmonary Nodules Detection Network on CT Images with Dynamic Channel Pruning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 92 -106 .
[8] LU Mengxiao,ZHANG Yangchun,ZHANG Xiaofeng. Controlling Value Estimation Biasin Successor Features by Distributional Reinforcement Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 107 -119 .
[9] JIANG Yunlu, LU Huijie, HUANG Xiaowen. Application Research of Penalized Weighted Composite Quantile Regression Method in Fixed Effects Panel Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 120 -127 .
[10] DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates[J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128 -139 .