Journal of Guangxi Normal University(Natural Science Edition) ›› 2025, Vol. 43 ›› Issue (6): 42-53.doi: 10.16088/j.issn.1001-6600.2024122402
• Physical and Electronic Engineering • Previous Articles Next Articles
LI Hao, HE Bing*
| [1] XU W H, ZHENG H X, LIU Y, et al. A droplet-based electricity generator with high instantaneous power density[J]. Nature, 2020, 578(7795): 392-396. DOI: 10.1038/s41586-020-1985-6. [2] GE P, WANG S L, ZHANG J H, et al. Micro-/nanostructures meet anisotropic wetting: from preparation methods to applications[J]. Materials Horizons, 2020, 7(10): 2566-2595. DOI: 10.1039/D0MH00768D. [3] DING Y, HOWES P D, DE MELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132-149. DOI: 10.1021/acs.analchem.9b05047. [4] ZHENG Y M, GAO X F, JIANG L. Directional adhesion of superhydrophobic butterfly wings[J]. Soft Matter, 2007, 3(2): 178-182. DOI: 10.1039/b612667g. [5] WANG L X, ZHOU Q. Surface hydrophobicity of slippery zones in the pitchers of two Nepenthes species and a hybrid[J]. Scientific Reports, 2016, 6: 19907. DOI: 10.1038/srep19907. [6] ZHENG Y M, BAI H, HUANG Z B, et al. Directional water collection on wetted spider silk[J]. Nature, 2010, 463(7281): 640-643. DOI: 10.1038/nature08729. [7] MAYAMA H. Secret of Lotus leaf: importance of double roughness structures for super water-repellency[J]. Journal of Photopolymer Science and Technology, 2018, 31(6): 705-710. DOI: 10.2494/photopolymer.31.705. [8] LI Y X, CUI Z H, LI G Q, et al. Directional and adaptive oil self-transport on a multi-bioinspired grooved conical spine[J]. Advanced Functional Materials, 2022, 32(27): 2201035. DOI: 10.1002/adfm.202201035. [9] TANG X, TIAN Y, TIAN X W, et al. Design of multi-scale textured surfaces for unconventional liquid harnessing[J]. Materials Today, 2021, 43: 62-83. DOI: 10.1016/j.mattod.2020.08.013. [10] HU Z F, CHU F Q, SHAN H, et al. Understanding and utilizing droplet impact on superhydrophobic surfaces: phenomena, mechanisms, regulations, applications, and beyond[J]. Advanced Materials, 2024, 36(11): 2310177. DOI: 10.1002/adma. 202310177. [11] QIAN L J, HUO B J, CHEN Z L, et al. Droplet bouncing on moving superhydrophobic groove surfaces[J]. International Journal of Multiphase Flow, 2023, 165: 104454. DOI: 10.1016/j.ijmultiphaseflow.2023.104454. [12] SONG J L, GAO M Q, ZHAO C L, et al. Large-area fabrication of droplet pancake bouncing surface and control of bouncing state[J]. ACS Nano, 2017, 11(9): 9259-9267. DOI: 10.1021/acsnano.7b04494. [13] VAIKUNTANATHAN V, KANNAN R, SIVAKUMAR D. Impact of water drops onto the junction of a hydrophobic texture and a hydrophilic smooth surface[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 369(1/2/3): 65-74. DOI: 10.1016/j.colsurfa.2010.07.034. [14] VAIKUNTANATHAN V, SIVAKUMAR D. Maximum spreading of liquid drops impacting on groove-textured surfaces: effect of surface texture[J]. Langmuir, 2016, 32(10): 2399-2409. DOI: 10.1021/acs.langmuir.5b04639. [15] TAO R, LIANG G Q, DOU B H, et al. Oblique pancake bouncing[J]. Cell Reports Physical Science, 2022, 3(1): 100721. DOI: 10.1016/j.xcrp.2021.100721. [16] YADA S, BAGHERI S, HANSSON J, et al. Droplet leaping governs microstructured surface wetting[J]. Soft Matter, 2019, 15(46): 9528-9536. DOI: 10.1039/c9sm01854a. [17] ZHANG B, LEI Q, WANG Z K, et al. Droplets can rebound toward both directions on textured surfaces with a wettability gradient[J]. Langmuir, 2016, 32(1): 346-351. DOI: 10.1021/acs.langmuir.5b04365. [18] ZHAO J Y, CHEN S. Following or against topographic wettability gradient: movements of droplets on a micropatterned surface[J]. Langmuir, 2017, 33(21): 5328-5335. DOI: 10.1021/acs.langmuir.7b00438. [19] YUN S. Ellipsoidal drop impact on a single-ridge superhydrophobic surface[J]. International Journal of Mechanical Sciences, 2021, 208: 106677. DOI: 10.1016/j.ijmecsci.2021.106677. [20] ZHAO J Y, CHEN S, LIU Y. Spontaneous wetting transition of droplet coalescence on immersed micropillared surfaces[J]. Applied Mathematical Modelling, 2018, 63: 390-404. DOI: 10.1016/j.apm.2018.06.041. [21] YUAN Z C, MATSUMOTO M, KUROSE R. Directional rebounding of a droplet impinging hydrophobic surfaces with roughness gradients[J]. International Journal of Multiphase Flow, 2021, 138: 103611. DOI: 10.1016/j.ijmultiphaseflow.2021.103611. [22] YUAN Z C, MATSUMOTO M, KUROSE R. Numerical study of droplet impingement on surfaces with hierarchical structures[J]. International Journal of Multiphase Flow, 2022, 147: 103908. DOI: 10.1016/j.ijmultiphaseflow.2021.103908. [23] 张建民, 何小泷. 格子玻尔兹曼方法在多相流中的应用[C] //第十四届全国水动力学学术会议暨第二十八届全国水动力学研讨会文集(上册). 长春, 2017: 93-110. [24] CHEN S Y, DOOLEN G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30: 329-364. DOI: 10.1146/annurev.fluid.30.1.329. [25] AIDUN C K, CLAUSEN J R. Lattice-Boltzmann method for complex flows[J]. Annual Review of Fluid Mechanics, 2010, 42: 439-472. DOI: 10.1146/annurev-fluid-121108-145519. [26] KRÜGER T, KUSUMAATMAJA H, KUZMIN A, et al. The lattice Boltzmann method[J]. Springer International Publishing, 2017, 10(978-3): 4-15. [27] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165. [28] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95: 063305. DOI: 10.1103/PhysRevE.95.063305. [29] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830. [30] ZHENG H W, SHU C, CHEW Y T. A lattice Boltzmann model for multiphase flows with large density ratio[J]. Journal of Computational Physics, 2006, 218(1): 353-371. DOI: 10.1016/j.jcp.2006.02.015. [31] WEN B H, QIN Z R, ZHANG C Y, et al. Thermodynamic-consistent lattice Boltzmann model for nonideal fluids[J]. EPL (Europhysics Letters), 2015, 112(4): 44002. DOI: 10.1209/0295-5075/112/44002. [32] 闻炳海, 张超英, 方海平. 晶格Boltzmann方法中流体力的计算[J]. 中国科学: 物理学 力学 天文学, 2017, 47(7): 070012. DOI: 10.1360/SSPMA2016-00404. [33] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763. [34] 刘阳莎. 基于晶格Boltzmann方法的曲面接触角测量算法研究[D]. 桂林: 广西师范大学, 2023. DOI: 10.27036/d.cnki.ggxsu.2023.001941. [35] CHEN L, KANG Q J, MU Y T, et al. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications[J]. International Journal of Heat and Mass Transfer, 2014, 76: 210-236. DOI: 10.1016/j.ijheatmasstransfer.2014.04.032. [36] GUO C F, ZHAO D Y, SUN Y J, et al. Droplet impact on anisotropic superhydrophobic surfaces[J]. Langmuir, 2018, 34(11): 3533-3540. DOI: 10.1021/acs.langmuir.7b03752. [37] WANG S, LI H L, DUAN H, et al. Directed motion of an impinging water droplet: seesaw effect[J]. Journal of Materials Chemistry A, 2020, 8(16): 7889-7896. DOI: 10.1039/D0TA00037J. |
| [1] | CHEN Jianguo, LIANG Enhua, SONG Xuewei, QIN Zhangrong. Lattice Boltzmann Simulation for the Aqueous Humour Dynamics of the Human Eye Based on 3D Reconstruction of OCT Images [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 29-41. |
| [2] | LING Fu, ZHANG Yonggang, WEN Binghai. Study on Curve Boundary Algorithm of Multiphase Lattice Boltzmann Method Based on Interpolation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 54-68. |
| [3] | DENG Jinna, LIU Qiumei, CHEN Yiming, YANG Aimin. Numerical Simulation and Stability Analysis of Two Kinds of Viscoelastic Moving Plates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2025, 43(6): 128-139. |
| [4] | LI Ruotong, ZHONG Xingguo, LIU Qilin, WEN Binghai. Free-Energy-Density Model Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(4): 90-99. |
| [5] | ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139. |
| [6] | SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44-53. |
| [7] | GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100. |
| [8] | HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81. |
| [9] | LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78. |
| [10] | ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26. |
| [11] | QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37. |
| [12] | HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43. |
| [13] | CHEN Chunyan, XU Zhipeng, KUANG Hua. Modeling and Stability Analysis of Traffic Flow Car-following Modelwith Continuous Memory Effect [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 14-21. |
| [14] | LI Yi-chun, DONG De-xin, WANG Yi-bing. Transport Time Scale in the Beilun River Estuary and Its Adjacent Area [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 56-63. |
| [15] | QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24. |
|