Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (4): 90-99.doi: 10.16088/j.issn.1001-6600.2023080803

Previous Articles     Next Articles

Free-Energy-Density Model Based on Lattice Boltzmann Method

LI Ruotong1,2, ZHONG Xingguo1,2, LIU Qilin1,2, WEN Binghai1,2*   

  1. 1. Key Laboratory of Education Blockchain and Intelligent Technology, Ministry of Education (Guangxi Normal University), Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Multi-Source InformationMining and Security (Guangxi Normal University), Guilin Guangxi 541004, China
  • Received:2023-08-08 Revised:2023-10-04 Online:2024-07-25 Published:2024-09-05

Abstract: The multiphase flow model based on the lattice Boltzmann method has the advantages of automatic evolution of the phase interface and no boundary integration. It has been widely studied and applied in the simulation of complex multiphase fluid systems. In this paper, a multiphase flow model satisfying thermodynamic consistency and Galilean invariance is proposed by introducing the free energy density to calculate the interaction force between molecules. The results of using this model to predict the liquid-gas two-phase coexistence densities are in good agreement with theoretical values. At low temperatures, they are better than the improved pseudopotential model. At the same time, the model can also be used for the simulation of multi-phase flow systems with large density ratios. The model's compliance with Galilean invariance is verified by a series of numerical simulations such as speckle map and droplet impact on the liquid film. The model is physically clear and easy to implement, then, it can simulate multiphase flow systems with different equations of state, which has a better potential for practicality and application.

Key words: lattice Boltzmann method, multiphase flow, free energy model, free energy density, large density ratio

CLC Number:  O359
[1] 何雅玲,李庆,王勇,等.格子Boltzmann方法的理论及应用[M].北京:高等教育出版社,2023.
[2] SAHU A, BHOWMICK S. Applications of Lattice Boltzmann in method in multi-component and multi-phase flow: A review[J]. AIP Conference Proceedings, 2020, 2273(1): 030007. DOI: 10.1063/5.0024322.
[3] JIANG F, LIU H H, CHEN X, et al. A coupled LBM-DEM method for simulating the multiphase fluid-solid interaction problem[J]. Journal of Computational Physics, 2022, 454: 110963. DOI: 10.1016/j.jcp.2022.110963.
[4] 王利民,付少童.颗粒流体系统的格子Boltzmann数值方法研究进展[J].计算力学学报,2022,39(3):332-340.DOI: 10.7511/jslxCMGM202209.
[5] 李庆,余悦,唐诗.多相格子Boltzmann方法及其在相变传热中的应用[J].科学通报,2020,65(17):1677-1693.DOI: 10.1360/TB-2019-0769.
[6] 凌风如,张超英,陈燕雁,等.LBM中基于半程反弹的统一边界条件研究[J].广西师范大学学报(自然科学版),2020,38(1):70-78.DOI: 10.16088/j.issn.1001-6600.2020.01.009.
[7] CHANNOUF S, ADMI Y, JAMI M, et al. Study of two layered immiscible fluids flow in a channel with obstacle by using lattice Boltzmann RK color gradient model[J]. International Journal of Renewable Energy Development, 2023, 12(1): 22-25. DOI: 10.14710/ijred.2023.46696.
[8] WANG H L, YUAN X L, LIANG H, et al. A brief review of the phase-field-based lattice Boltzmann method for multiphase flows[J]. Capillarity, 2019, 2(3): 33-52. DOI: 10.26804/capi.2019.03.01.
[9] ZHAN C J, CHAI Z H, SHI B C. Phase-field-based multiple-distribution-function lattice Boltzmann method for incompressible two-phase flows[J]. International Journal for Numerical Methods in Fluids, 2023, 95(5): 683-709. DOI: 10.1002/fld.5167.
[10] CHANNOUF S, BENHAMOU J, JAMI M. Condensation behaviors of droplet under the gravity effect on hydrophobic surface by using the hybrid thermal pseudopotential LBM model[C] //2022 2nd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET). Los Alamitos, CA: IEEE Computer Society, 2022: 1-5. DOI: 10.1109/IRASET52964.2022.9737978.
[11] MORADI B, GHASEMI S, HOSSEINI MOGHADAM A, et al. Dynamic behavior investigation of capillary rising at various dominant forces using free energy lattice Boltzmann method[J]. Meccanica, 2021, 56(12): 2961-2977. DOI: 10.1007/s11012-021-01426-z.
[12] 管羿鸣,季婷婷,杨鑫宇,等.液滴在化学异构表面上侧向弹跳的计算机模拟研究[J].广西师范大学学报(自然科学版),2021,39(2):90-100.DOI: 10.16088/j.issn.1001-6600.2020031201.
[13] 许爱国,陈杰,宋家辉,等.多相流系统的离散玻尔兹曼研究进展[J].空气动力学学报,2021,39(3):138-169.DOI: 10.7638/kqdlxxb-2021.0021.
[14] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E, 1993, 47(3): 1815-1819. DOI: 10.1103/physreve.47.1815.
[15] SHAN X, CHEN H. Simulation of nonideal gases and liquid-gas phase transitions by the lattice Boltzmann equation[J]. Physical Review E, 1994, 49(4): 2941-2948. DOI: 10.1103/physreve.49.2941.
[16] LI Q, LUO K H, LI X J. Forcing scheme in pseudopotential lattice Boltzmann model for multiphase flows[J]. Physical Review E, 2012, 86(1): 016709. DOI: 10.1103/PhysRevE.86.016709.
[17] LI Q, LUO K H, LI X J. Lattice Boltzmann modeling of multiphase flows at large density ratio with an improved pseudopotential model[J]. Physical Review E, 2013, 87(5): 053301. DOI: 10.1103/PhysRevE.87.053301.
[18] KHAJEPOR S, WEN J, CHEN B X. Multipseudopotential interaction: A solution for thermodynamic inconsistency in pseudopotential lattice Boltzmann models[J]. Physical Review E, 2015, 91(2): 023301. DOI: 10.1103/PhysRevE.91.023301.
[19] PENG H N, HE X L, ZHANG J M, et al. Cavitation bubble collapse between parallel rigid walls with the three-dimensional multi-relaxation time pseudopotential lattice Boltzmann method[J]. AIP Advances, 2020, 10(10): 105104. DOI: 10.1063/5.0005048.
[20] MUKHERJEE A, BASU D N, MONDAL P K. Algorithmic augmentation in the pseudopotential-based lattice Boltzmann method for simulating the pool boiling phenomenon with high-density ratio[J]. Physical Review E, 2021, 103(5): 053302. DOI: 10.1103/PhysRevE.103.053302.
[21] SWIFT M R, OSBORN W R, YEOMANS J M. Lattice Boltzmann simulation of nonideal fluids[J]. Physical Review Letters, 1995, 75(5): 830-833. DOI: 10.1103/PhysRevLett.75.830.
[22] SWIFT M R, ORLANDINI E, OSBORN W R, et al. Lattice Boltzmann simulations of liquid-gas and binary fluid systems[J]. Physical Review E, 1996, 54(5): 5041-5052. DOI: 10.1103/physreve.54.5041.
[23] INAMURO T, KONISHI N, OGINO F. A Galilean invariant model of the lattice Boltzmann method for multiphase fluid flows using free-energy approach[J]. Computer Physics Communications, 2000, 129(1/3): 32-45. DOI: 10.1016/S0010-4655(00)00090-4.
[24] LEE T, FISCHER P F. Eliminating parasitic currents in the lattice Boltzmann equation method for nonideal gases[J]. Physical Review E, 2006, 74(4): 046709. DOI: 10.1103/PhysRevE.74.046709.
[25] WEN B H, ZHOU X, HE B, et al. Chemical-potential-based lattice Boltzmann method for nonideal fluids[J]. Physical Review E, 2017, 95(6): 063305. DOI: 10.1103/PhysRevE.95.063305.
[26] WEN B H, ZHAO L, QIU W, et al. Chemical-potential multiphase lattice Boltzmann method with superlarge density ratios[J]. Physical Review E, 2020, 102(1): 013303. DOI: 10.1103/PhysRevE.102.013303.
[27] 杨旭光,汪垒.多相多组分Peng-Robinson流体的正则化格子Boltzmann方法研究及模拟[J].力学学报,2023,55(8):1649-1661.DOI: 10.6052/0459-1879-23-096.
[28] GRUSZCZYNSKI G, MITCHELL T, LEONARDI C, et al. A cascaded phase-field lattice Boltzmann model for the simulation of incompressible, immiscible fluids with high density contrast[J].Computers & Mathematics with Applications,2020, 79 (4): 1049-1071. DOI: 10.1016/j.camwa.2019.08.018.
[29] ZHENG W H, HONG F J, GONG S. Improved multi-relaxation time thermal pseudo-potential lattice Boltzmann method with multi-block grid and complete unit conversion for liquid-vapor phase transition[J]. Physics of Fluids, 2023, 35(5): 053337. DOI: 10.1063/5.0147074.
[30] 李晓庆,范玉泽,刘晓燕.骨架结构对固液相变蓄热性能影响的LBM研究[J].储能科学与技术,2023,12(6):1774-1783.DOI: 10.19799/j.cnki.2095-4239.2022.0776.
[31] 高宇航,冯凯,张会臣.基于格子Boltzmann方法的微通道内气液两相流流型和压力降特性研究[J].润滑与密封,2023,48(7):27-33.DOI: 10.3969/j.issn.0254-0150.2023.07.005.
[32] QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6): 479-484. DOI: 10.1209/0295-5075/17/6/001.
[33] CHEN H D, CHEN S Y, MATTHAEUS W H. Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method[J]. Physical Review A, 1992, 45(8): R5339-R5342. DOI: 10.1103/physreva.45.r5339.
[34] HE X Y, LUO L S. A priori derivation of the lattice Boltzmann equation[J]. Physical Review E, 1997, 55(6): R6333-R6336. DOI: 10.1103/PhysRevE.55.R6333.
[35] HE X Y, LUO L S. Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation[J]. Physical Review E, 1997, 56(6): 6811-6817. DOI: 10.1103/PhysRevE.56.6811.
[36] D’HUMIÈRES D. Generalized lattice-Boltzmann equations[M] //WEAVER D P, SHIZGAL B D. Rarefied Gas Dynamics: Theory and Simulations. Washington, D.C.: AAIA, 1994: 450-458. DOI: 10.2514/5.9781600866319.0450.0458.
[37] LALLEMAND P, LUO L S. Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability[J]. Physical Review E, 2000, 61(6): 6546-6562. DOI: 10.1103/physreve.61.6546.
[38] CHAI Z H, SHI B C. Multiple-relaxation-time lattice Boltzmann method for the Navier-Stokes and nonlinear convection-diffusion equations: Modeling, analysis, and elements[J]. Physical Review E, 2020, 102(2): 023306. DOI: 10.1103/PhysRevE.102.023306.
[39] KUPERSHTOKH A L, MEDVEDEV D A, KARPOV D I. On equations of state in a lattice Boltzmann method[J]. Computers & Mathematics with Applications, 2009, 58(5): 965-974. DOI: 10.1016/j.camwa.2009.02.024.
[40] 邵玉馥,季婷婷,姚怡辰,等.基于晶格Boltzmann方法研究曲面上接触角的测量算法[J].广西师范大学学报(自然科学版),2021,39(6):44-53.DOI: 10.16088/j.issn.1001-6600.2020090601.
[41] HUANG Y F, XU X X, ZHANG S J, et al. Thermodynamic characteristics of gas-liquid phase change investigated by lattice Boltzmann method[J]. Applied Thermal Engineering, 2023, 227: 120367. DOI: 10.1016/j.applthermaleng.2023.120367.
[42] JAMET D, TORRES D, BRACKBILL J U. On the theory and computation of surface tension: the elimination of parasitic currents through energy conservation in the second-gradient method[J]. Journal of Computational Physics, 2002, 182(1): 262-276. DOI: 10.1006/jcph.2002.7165.
[43] LI J, LE D V, LI H Y, et al. Minimum superheat imposed by equations of state in modelling the phase transition[J]. International Journal of Thermal Sciences, 2023, 189: 108288. DOI: 10.1016/j.ijthermalsci.2023.108288.
[44] SOOMRO M, AYALA L F, PENG C, et al. Fugacity-based lattice Boltzmann method for multicomponent multiphase systems[J]. Physical Review E, 2023, 107(1): 015304. DOI: 10.1103/PhysRevE.107.015304.
[45] JI T T, PAN Y C, SHAO Y F, et al. Lateral drop rebound on a hydrophobic and chemically heterogeneous surface[J]. Langmuir, 2021, 37(23): 6905-6914. DOI: 10.1021/acs.langmuir.1c00242.
[46] LIU Y S, YAO Y C, LI Q Y, et al. Contact angle measurement on curved wetting surfaces in multiphase lattice Boltzmann method[J]. Langmuir, 2023, 39(8): 2974-2984. DOI: 10.1021/acs.langmuir.2c02763.
[47] 刁伟,程毅,徐启航,等.基于LBM的大尺度水流运动三维模拟方法及其GPU并行实现[J].水电能源科学,2022,40(7):131-135.DOI: 10.20040/j.cnki.1000-7709.2022.20211767.
[48] 崔坤锋.基于三维格子Boltzmann法的微结构表面液滴润湿性研究[D].西安:西安理工大学,2023.
[49] 董银宽,袁子豪,靳遵龙.基于LBM不均匀温度下气液两相分离模拟[J].低温与超导,2023,51(7):49-55.DOI: 10.16711/j.1001-7100.2023.07.008.
[50] WANG J J, LIANG G T, WANG T J, et al. Interfacial phenomena in impact of droplet array on liquid film[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 615: 126292. DOI: 10.1016/j.colsurfa.2021.126292.
[51] 鲁舟洋,邢岩.基于格子玻尔兹曼方法的液滴撞击液膜数值模拟[J].陕西水利,2020(11):8-11,18.DOI: 10.16747/j.cnki.cn61-1109/tv.2020.11.003.
[52] DU J Y, CHAMAKOS N T, PAPATHANASIOU A G, et al. Initial spreading dynamics of a liquid droplet: the effects of wettability, liquid properties, and substrate topography[J]. Physics of Fluids, 2021, 33(4): 042118. DOI: 10.1063/5.0049409.
[53] 赵金想,陈燕雁,覃章荣,等.一种基于化学势LBM多相流模型的改进方法[J].广西师范大学学报(自然科学版),2020,38(2):87-95.DOI: 10.16088/j.issn.1001-6600.2020.02.010.
[1] SHAO Yufu, JI Tingting, YAO Yichen, WEN Binghai. Research on Measurement Algorithm of Contact Angle on Curved Surface Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 44-53.
[2] GUAN Yiming, JI Tingting, YANG Xinyu, WEN Binghai. Computer Simulation of Droplets Bounce Laterally on Chemical Isomerism Surfaces [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 90-100.
[3] LING Fengru, ZHANG Chaoying, CHEN Yanyan, QIN Zhangrong. A Unified Boundary Condition Based on the Halfway Bounce-back Scheme in Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 70-78.
[4] ZHANG Lisheng, ZHANG Zhiyong, MA Kaihua, LI Guofang. Studying Oscillations in Convection Cahn-Hilliard System with Improved Lattice Boltzmann Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 15-26.
[5] QIU Wen, YE Yong, ZHOU Sihao, WEN Binghai. Contact Angle in Micro Droplet Deformation Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 27-37.
[6] HUANG Bingfang,WEN Binghai,QIU Wen,ZHAO Wanling,CHEN Yanyan. Research on Real Time Measurement of Contact Angle Based on Lattice Boltzmann Method [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 34-43.
[7] QIN Zhang-rong, ZHANG Chao-ying, QIU Bin, LI Yuan-yuan, MO Liu-liu. Implementation of the Acceleration Simulation with Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(4): 18-24.
[8] ZHANG Chao-ying, LI Bing-hua, QIN Zhang-rong. Designing of Comprehensive Optimization Parallel Algorithm for Lattice Boltzmann Method Based on CUDA [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 142-148.
[9] QIU Bing, WANG Li-long, XUE Ze, LI Hua-bing. Kinetics Characteristic Transitionof Suspended Particle in a Pulsating Flow in Microvessel by Lattice Boltzmann Simulation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 7-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jie, SONG Shuang, WU Bin. Overview of Image USM Sharpening Forensics and Anti-forensics Techniques[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 1 -16 .
[2] AI Congcong, GONG Guoli, JIAO Xiaoyu, TIAN Lu, GAI Zhongchao, GOU Jingxuan, LI Hui. Komagataella phaffii Serves as a Model Organism for Emerging Basic Research[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 17 -26 .
[3] ZHAI Yanhao, WANG Yanwu, LI Qiang, LI Jingkun. Progress of Dissolved Organic Matter in Inland Water by Three-Dimensional Fluorescence Spectroscopy Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 34 -46 .
[4] CHEN Li, TANG Mingzhu, GUO Shenghui. Cyber-Physical Systems State Estimation and Actuator Attack Reconstruction of Intelligent Vehicles[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 59 -69 .
[5] LI Chengqian, SHI Chen, DENG Minyi. Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 86 -98 .
[6] LÜ Hui, LÜ Weifeng. Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 99 -107 .
[7] YI Jianbing, PENG Xin, CAO Feng, LI Jun, XIE Weijia. Research on Point Cloud Registration Algorithm Based on Multi-scale Feature Fusion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 108 -120 .
[8] LI Li, LI Haoze, LI Tao. Multi-primary-node Byzantine Fault-Tolerant Consensus Mechanism Based on Raft[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 121 -130 .
[9] ZHAO Xiaomei, DING Yong, WANG Haitao. Maximum Likelihood DOA Estimation Based on Improved Monarch Butterfly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 131 -140 .
[10] ZHU Yan, CAI Jing, LONG Fang. Statistical Analysis of Partially Step Stress Accelerated Life Tests for Compound Rayleigh Distribution Competing Failure Model Under Progressive Type-Ι Hybrid Censoring[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(3): 159 -169 .