Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 86-98.doi: 10.16088/j.issn.1001-6600.2023062102

Previous Articles     Next Articles

Study for the Electrocardiographic Signal of Brugada Syndrome Patients Using Cellular Automaton

LI Chengqian, SHI Chen, DENG Minyi*   

  1. College of Physical Science and Technology, Guangxi Normal University, Guilin Guangxi 541004, China
  • Received:2023-06-21 Revised:2023-10-26 Published:2024-05-31

Abstract: The relationship between the symptoms of Brugada Syndrome (BrS) patients and their abnormal conduction velocity (CV) restitution and abnormal action potential duration (APD) restitution are investigated using cellular automaton in this paper. Firstly, based on the characteristics of the electrocardiogram signals of BrS patients, the cellular automaton model is dimensionalized, and CV recovery and APD recovery are considered in the model. The behavior of the spiral wave of electrocardiographic signal related to the tachycardia is studied by using this model. The results indicate that only when CV recovery occurs, tachycardia will be maintained and will not worsen; Under the combined influence of CV recovery and memoryless APD recovery, tachycardia may disappear or transform into ventricular fibrillation, with a probability of 54%, significantly higher than clinical data; Under the combined influence of CV recovery and memory based APD recovery, tachycardia may disappear, maintain, or transform into ventricular fibrillation, with a conversion rate of 35% to ventricular fibrillation, which is consistent with clinical data. Tracking and observing the conduction of electrocardiogram signals near the wave head, it is found that the development of symptoms in BrS patients is related to the electrical signal conduction block caused by CV or APD recovery. The more severe the conduction block, the more likely BrS patients are to develop from tachycardia to ventricular fibrillation. Memory based APD recovery can reduce the incidence of ventricular fibrillation due to its memory effect, which can reduce the oscillation amplitude of APD.

Key words: Brugada syndrome, electrocardiographic signal, cellular automaton, tachycardia, ventricular fibrillation

CLC Number:  TN911.7;R541.7
[1] BRUGADA P, BRUGADA J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report[J]. Journal of the American College of Cardiology, 1992, 20(6): 1391-1396. DOI: 10.1016/0735-1097(92)90253-j.
[2] ANTZELEVITCH C, BRUGADA P, BORGGREFE M, et al. Brugada syndrome: report of the second consensus conference[J]. Heart Rhythm, 2005, 2(4): 429-440. DOI: 10.1016/j.hrthm.2005.01.005.
[3] KOCABAS U, HASDEMIR C, KAYA E, et al. Brugada syndrome, Brugada phenocopy or none?[J]. Annals of Noninvasive Electrocardiology, 2017, 22(6): e12470. DOI: 10.1111/anec.12470.
[4] PROBST V, VELTMANN C, ECKARDT L, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada Syndrome Registry[J]. Circulation, 2010, 121(5): 635-643. DOI: 10.1161/CIRCULATIONAHA.109.887026.
[5] SATISH H, REDDY M R. Reentry in cardiac ventricular epicardial tissue due to SCN5A L812Q gene mutation: a computational study[J]. Biomedical Physics & Engineering Express, 2022, 8(3): 10. DOI: 10.1088/2057-1976/ac605c.
[6] LANDAW J, YUAN X P, CHEN P S, et al. The transient outward potassium current plays a key role in spiral wave breakup in ventricular tissue[J]. American Journal of Physiology. Heart and Circulatory Physiology, 2021, 320(2): H826-H837. DOI: 10.1152/ajpheart.00608.2020.
[7] ASHINO S, WATANABE I, KOFUNE M, et al. Effects of quinidine on the action potential duration restitution property in the right ventricular outflow tract in patients with Brugada syndrome[J]. Circulation Journal, 2011, 75(9): 2080-2086. DOI: 10.1253/circj.cj-11-0227.
[8] HALPERIN L, MELLOR G, TALAJIC M, et al. Quinidine effective for the management of ventricular and atrial arrhythmias associated with Brugada syndrome[J]. HeartRhythm Case Reports, 2018, 4(7): 270-272. DOI: 10.1016/j.hrcr.2018.01.008.
[9] BRUGADA R, BRUGADA J, ANTZELEVITCH C, et al. Sodium channel blockers identify risk for sudden death in patients with ST-segment elevation and right bundle branch block but structurally normal hearts[J]. Circulation, 2000, 101(5): 510-515. DOI: 10.1161/01.cir.101.5.510.
[10] SCHEIRLYNCK E, CHIVULESCU M, LIE Ø H, et al. Worse prognosis in Brugada syndrome patients with arrhythmogenic cardiomyopathy features[J]. JACC: Clinical Electrophysiology, 2020, 6(11): 1353-1363. DOI: 10.1016/j.jacep.2020.05.026.
[11] ANTZELEVITCH C, YAN G X. Cellular and Ionic mechanisms responsible for the Brugada syndrome[J]. Journal of Electrocardiology, 2000, 33(Supplement 1): 33-39. DOI: 10.1054/jelc.2000.20321.
[12] ZHU J F, SHEN Y, XIONG H B, et al. Identification of a novel missense SCN5A mutation in a Chinese Han family with Brugada syndrome[J]. Biochemical and Biophysical Research Communications, 2023, 649: 55-61. DOI: 10.1016/j.bbrc.2023.01.026.
[13] ANTZELEVITCH C. Heterogeneity and cardiac arrhythmias: an overview[J]. Heart Rhythm, 2007, 4(7): 964-972. DOI: 10.1016/j.hrthm.2007.03.036.
[14] NARAYAN S M, KIM J, TATE C, et al. Steep restitution of ventricular action potential duration and conduction slowing in human Brugada syndrome[J]. Heart Rhythm, 2007, 4(8): 1087-1089. DOI: 10.1016/j.hrthm.2007.04.018.
[15] FINLAY M, BHAR-AMATO J, NG K E, et al. Autonomic modulation of the electrical substrate in mice haploinsufficient for cardiac sodium channels: a model of the Brugada syndrome[J]. American Journal of Physiology. Cell Physiology, 2019, 317(3): C576-C583. DOI: 10.1152/ajpcell.00028.2019.
[16] POSTEMA P G, VAN DESSEL P F H M, DE BAKKER J M T, et al. Slow and discontinuous conduction conspire in Brugada syndrome: a right ventricular mapping and stimulation study[J]. Circulation: Arrhythmia and Electrophysiology, 2008, 1(5): 379-386. DOI: 10.1161/CIRCEP.108.790543.
[17] CORONEL R, CASINI S, KOOPMANN T T, et al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study[J]. Circulation, 2005, 112(18): 2769-2777. DOI: 10.1161/CIRCULATIONAHA.105.532614.
[18] WOLFRAM S. Statistical mechanics of cellular automata[J]. Reviews of Modern Physics, 1983, 55(3): 601-644. DOI: 10.1103/RevModPhys.55.601.
[19] 邝先验,陈自如.考虑礼让行人的交叉口机非混合交通流模型[J].广西师范大学学报(自然科学版),2019,37(4):1-15. DOI: 10.16088/j.issn.1001-6600.2019.04.001.
[20] WANG F H, LI L Y, LIU Y T, et al. One-dimensional cellular automaton traffic flow model based on defensive driving strategy[J]. International Journal of Crashworthiness, 2022, 27(1): 193-197. DOI: 10.1080/13588265.2020.1785091.
[21] KUANG X Y, CHEN Z R. Trajectory research of Cellular Automaton Model based on real driving behaviour[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 602: 127610. DOI: 10.1016/j.physa.2022.127610.
[22] LI Y X, YANG XX, MENG M, et al. Pedestrian evacuation simulation in multi-exit case: an emotion and group dual-driven method[J]. Chinese Physics B, 2023, 32(4): 048901. DOI: 10.1088/1674-1056/ac9609.
[23] 张琦,渠静.基于前摄效应的不耐烦行为建模与双向行人流动态[J].物理学报,2022,71(7):070502. DOI: 10.7498/aps.71.20211537.
[24] ZHANG Y X, LI W, RUI Y, et al. A modified cellular automaton model of pedestrian evacuation in a tunnel fire[J]. Tunnelling and Underground Space Technology, 2022, 130: 104673. DOI: 10.1016/j.tust.2022.104673.
[25] WANG G N, CHEN T, CHEN J W, et al. Simulation of crowd dynamics in pedestrian evacuation concerning panic contagion: a cellular automaton approach[J]. Chinese Physics B, 2022, 31(6): 060402. DOI: 10.1088/1674-1056/ac4a66.
[26] NAGARAJU K, SUDEEP K S, KURHEKAR M P. A cellular automaton model to find the risk of developing autism through gut-mediated effects[J]. Computers in Biology and Medicine, 2019, 110: 207-217. DOI: 10.1016/j.compbiomed.2019.05.015.
[27] VENUGOPAL N, MARI K, MANIKANDAN G, et al. Phase quantized polar transformative with cellular automaton for early glaucoma detection[J]. Ain Shams Engineering Journal, 2021, 12(4): 4145-4155. DOI: 10.1016/j.asej.2021.04.018.
[28] VALENTIM C A, RABI J A, DAVID S A. Cellular-automaton model for tumor growth dynamics: Virtualization of different scenarios[J]. Computers in Biology and Medicine, 2023, 153: 106481. DOI: 10.1016/j.compbiomed.2022.106481.
[29] PARK A, RAWLE R J. Kinetic and cellular automaton models of west Nile virus hemifusion[J]. Biophysical Journa, 2020, 118(3): 553A. DOI: 10.1016/j.bpj.2019.11.3024.
[30] 师伟展,邝华,白克钊,等.固执者对舆论传播动力学的影响研究[J].广西师范大学学报(自然科学版),2014,32(3):22-26. DOI: 10.3969/j.issn.1001-6600.2014.03.004.
[31] CHEN H Z, SONG Y H, LIU D. Research on cellular automata network public opinion transmission model based on combustion theory[J]. Journal of Physics: Conference Series, 2020, 1544(1): 012131. DOI: 10.1088/1742-6596/1544/1/012131.
[32] YU Y F, LI Y, LIN F, et al. A multi-grid Cellular Automaton model for simulating dendrite growth and its application in additive manufacturing[J]. Additive Manufacturing, 2021, 47: 102284. DOI: 10.1016/j.addma.2021.102284.
[33] OGAWA J, NATSUME Y. Three-dimensional large-scale grain growth simulation using a cellular automaton model[J]. Computational Materials Science, 2021, 199: 110729. DOI: 10.1016/j.commatsci.2021.110729.
[34] 张学良,谭惠丽,白克钊,等.一种体现心肌细胞传导记忆的元胞自动机模型[J].广西师范大学学报(自然科学版),2017,35(4):1-9. DOI: 10.16088/j.issn.1001-6600.2017.04.001.
[35] 关富荣,李成乾,邓敏艺.动作电位动态变化对螺旋波演化行为的影响[J].物理学报,2022,71(11):110502. DOI: 10.7498/aps.71.20220021.
[36] MOE G K, RHEINBOLDT W C, ABILDSKOV J A. A computer model of atrial fibrillation[J]. American Heart Journal, 1964, 67(2): 200-220. DOI: 10.1016/0002-8703(64)90371-0.
[37] 余承高,白融,陈栋梁,等.心脏电生理学基础与临床[M].武汉:华中科技大学出版社,2008:17.
[38] DE LANGE E, KUCERA J P. Alternans resonance and propagation block during supernormal conduction in cardiac tissue with decreased [K+]o[J]. Biophysical Journal, 2010, 98(7): 1129-1138. DOI: 10.1016/j.bpj.2009.12.4280.
[39] BIASCI V, SACCONI L, CYTRYNBAUM E N, et al. Universal mechanisms for self-termination of rapid cardiac rhythm[J]. Chaos, 2020, 30(12): 121107. DOI: 10.1063/5.0033813.
[40] WEBER F M, LUIK A, SCHILLING C, et al. Conduction velocity restitution of the human atrium--an efficient measurement protocol for clinical electrophysiological studies[J]. IEEE Transactions on Bio-medical Engineering, 2011, 58(9): 2648-2655. DOI: 10.1109/TBME.2011.2160453.
[41] SHRIER A, DUBARSKY H, ROSENGARTEN M, et al. Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve[J]. Circulation, 1987, 76(6): 1196-1205. DOI: 10.1161/01.cir.76.6.1196.
[42] SHATTOCK M J, PARK K C, YANG H Y, et al. Restitution slope is principally determined by steady-state action potential duration[J]. Cardiovascular Research, 2017, 113(7): 817-828. DOI: 10.1093/cvr/cvx063.
[43] LIN Y T, CHANG E T Y, EATOCK J, et al. Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model[J]. Journal of the Royal Society Interface, 2017, 14(128): 20160968. DOI: 10.1098/rsif.2016.0968.
[44] ISSA Z F,MILLER J M,ZIPES D P.临床心律失常与电生理学:《Braunwald心脏病学》姊妹卷[M].吴永全,张树龙,译.北京:北京大学医学出版社,2014:4,490.
[45] CALLAWAY C W, MENEGAZZI J J. Waveform analysis of ventricular fibrillation to predict defibrillation[J]. Current Opinion in Critical Care, 2005, 11(3): 192-199. DOI: 10.1097/01.ccx.0000161725.71211.42.
[46] INDIK J H, DONNERSTEIN R L, BERG R A, et al. Ventricular fibrillation frequency characteristics are altered in acute myocardial infarction[J]. Critical Care Medicine, 2007, 35(4): 1133-1138. DOI: 10.1097/01.CCM.0000259540.52062.99.
[47] AVULA U M R, ABRAMS J, KATCHMAN A, et al. Heterogeneity of the action potential duration is required for sustained atrial fibrillation[J]. JCI Insight, 2019, 5(11): 128765. DOI: 10.1172/jci.insight.128765.
[48] SORGENTE A, JOSEPHSON M E. Don’t forget the memory: contribution of the T wave vector in localizing the site of origin of a monomorphic idiopathic ventricular tachycardia[J]. Journal of Cardiology Cases, 2012, 5(1): e28-e31. DOI: 10.1016/j.jccase.2011.09.003.
[49] JING L Y, CHOURASIA S, PATWARDHAN A. Heterogeneous memory in restitution of action potential duration in pig ventricles[J]. Journal of Electrocardiology, 2010, 43(5): 425-432. DOI: 10.1016/j.jelectrocard.2010.02.006.
[50] IDEKER R E, ROGERS J M, GRAY R A. Steepness of the restitution curve: a slippery slope?[J]. Journal of Cardiovascular Electrophysiology, 2002, 13(11): 1173-1175. DOI: 10.1046/j.1540-8167.2002.01173.x.
[1] ZHANG Xueliang,TAN Huili, BAI Kezhao, TANG Guoning,DENG Minyi. A Cellular Automaton Model Connected to the ConductionRestitution Property of Cardiac Cells [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 1-9.
[2] CAI Mei-jing, KUANG Hua, BAI Ke-zhao, CHEN Ruo-hang. Effects of Internal Layout and Exit Position of New-style Cinema on Evacuation Efficiency [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(3): 1-6.
[3] PAN Jiang-hong, BAI Ke-zhao, KUANG Hua, KONG Ling-jiang. Cellular Automaton Traffic Flow Model Considering Effect of Visibility [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 1-4.
[4] BAI Ke-zhao, LUO Xu-dong, KONG Ling-jiang, LIU Mu-ren. Cellular Automaton Model of Date Transmission with Open Boundary Condition [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(3): 1-4.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!