Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (3): 99-107.doi: 10.16088/j.issn.1001-6600.2023053101

Previous Articles     Next Articles

Fundus Hemorrhagic Spot Detection Algorithm Based on Improved YOLOv5

LÜ Hui*, LÜ Weifeng   

  1. College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo Henan 454150, China
  • Received:2023-05-31 Revised:2023-07-17 Online:2024-05-25 Published:2024-05-31

Abstract: The small size and dense distribution of bleeding point lesions in the fundus image of diabetic retinopathy make it difficult for the existing algorithms to achieve accurate detection and localization of the lesions. A RCA-YOLO bleeding lesion detection algorithm is proposed. Based on YOLOv5s, the RCA-Net module is first used in the backbone network, so that the network can obtain the connection between each channel while retaining the location information of the target lesion, and enhance the feature extraction and localization ability of the network for the bleeding area. In the feature fusion stage, the lightweight feature pyramid network Tiny-BiFPN is adopted to reduce the number of network parameters and achieve high-efficiency multi-scale feature fusion. Finally, a small target feature enhancement module is proposed to improve the detection accuracy of the algorithm for small bleeding point lesions. The experimental results show that the improved RCA-YOLO algorithm can accurately detect and locate bleeding point lesions, and the average detection accuracy (mAP) can reach 79.3%, which is 9.5 percentage points higher than that of YOLOv5s algorithm, and its detection results are also better than mainstream algorithms such as Faster R-CNN, YOLOv6s, YOLOv7 and YOLOv8s.

Key words: fundus image, diabetic retinopathy, object detection, hemorrhagic lesion, feature fusion

CLC Number:  R587.2;R774.1;TP183;TP391.41
[1] WONG T Y, SUN J, KAWASAKI R, et al. Guidelines on diabetic eye care: the International Council of Ophthalmology recommendations for screening, follow-up, referral, and treatment based on resource settings[J]. Ophthalmology, 2018, 125(10): 1608-1622. DOI: 10.1016/j.ophtha.2018.04.007.
[2] ZHAO Y B, FANG F Z. Measurement of the peripheral aberrations of human eyes: a comprehensive review[J]. Nanotechnology and Precision Engineering, 2020, 3(2): 53-68. DOI: 10.1016/j.npe.2020.05.001.
[3] 张琳.糖尿病视网膜病变早期筛防的意义[J].中国医药指南,2019,17(2):80. DOI: 10.15912/j.cnki.gocm.2019.02.069.
[4] 卢旭,郑世宝,彭昊玥.基于卷积神经网络的糖尿病视网膜眼底图像出血病变检测[J].电视技术,2019,43(1):84-89,110. DOI: 10.16280/j.videoe.2019.01.016.
[5] 林秀琴,熊义斌,肖键,等.免散瞳眼底照相在糖尿病视网膜病变筛查中的应用分析[J].国际眼科杂志,2019,19(1):135-138. DOI: 10.3980/j.issn.1672-5123.2019.1.31.
[6] 李子鹏.眼底荧光造影检查在糖尿病眼底病变筛查中的价值分析[J].中国实用医药,2022,17(15):78-80. DOI: 10.14163/j.cnki.11-5547/r.2022.15.023.
[7] GARCÍA M, LÓPEZ M I, ALVAREZ D, et al. Assessment of four neural network based classifiers to automatically detect red lesions in retinal images[J]. Medical Engineering & Physics, 2010, 32(10): 1085-1093. DOI: 10.1016/j.medengphy.2010.07.014.
[8] KAUR N, CHATTERJEE S, ACHARYYA M, et al. A supervised approach for automated detection of hemorrhages in retinal fundus images[C]// 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON). Los Alamitos, CA: IEEE Computer Society, 2016: 1-5. DOI: 10.1109/WECON.2016.7993461.
[9] KANDE G B, SAVITHRI T S, SUBBAIAH P V, et al. Detection of red lesions in digital fundus images[C]// 2009 IEEE International Symposium on Biomedical Imaging: from Nano to Macro. Los Alamitos, CA: IEEE Computer Society, 2009: 558-561. DOI: 10.1109/ISBI.2009.5193108.
[10] 肖志涛,赵北方,张芳,等.基于k均值聚类和自适应模板匹配的眼底出血点检测方法[J].中国生物医学工程学报,2015,34(3):264-271. DOI: 10.3969/j.issn.0258-8021.2015.03.002.
[11] SHENAVARMASOULEH F, ARABNIA H R. DRDr: automatic masking of exudates and microaneurysms caused by diabetic retinopathy using mask R-CNN and transfer learning[C]// Advances in Computer Vision and Computational Biology. Cham: Springer, 2021: 307-318. DOI: 10.1007/978-3-030-71051-4_24.
[12] AKUT R R. FILM: finding the location of microaneurysms on the retina[J]. Biomedical Engineering Letters, 2019, 9(4): 497-506. DOI: 10.1007/s13534-019-00136-6.
[13] 高玮玮,单明陶,宋楠,等.嵌入SENet的改进YOLOv4眼底图像微动脉瘤自动检测算法[J].生物医学工程学杂志,2022,39(4):713-720. DOI: 10.7507/1001-5515.202203022.
[14] 高玮玮,杨亦乐,方宇,等.多特征尺度融合改进Faster-RCNN视网膜微动脉瘤自动检测算法[J].光子学报,2023,52(4):0410002. DOI: 10.3788/gzxb20235204.0410002.
[15] 侯高峰,房丰洲.基于深度学习的糖尿病眼底病变检测研究[J].激光与光电子学进展,2023,60(2):0217001. DOI: 10.3788/LOP212505.
[16] 张焕龙,齐企业,张杰,等.基于改进YOLOv5的输电线路鸟巢检测方法研究[J].电力系统保护与控制,2023,51(2):151-159. DOI: 10.19783/j.cnki.pspc.220428.
[17] 黄叶祺,王明伟,闫瑞,等.基于改进的YOLOv5金刚石线表面质量检测[J].广西师范大学学报(自然科学版),2023,41(4):123-134. DOI: 10.16088/j.issn.1001-6600.2022112106.
[18] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Los Alamitos, CA: IEEE Computer Society, 2018: 7132-7141. DOI: 10.1109/CVPR.2018.00745.
[19] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018. Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[20] TAN M X, PANG R M, LE Q V. EfficientDet: scalable and efficient object detection[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2020: 10778-10787. DOI: 10.1109/CVPR42600.2020.01079.
[21] LI T, GAO Y Q, WANG K, et al. Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening[J]. Information Sciences, 2019, 501: 511-522. DOI: 10.1016/j.ins.2019.06.011.
[22] LI C Y, LI L L, JIANG H L, et al. YOLOv6: a single-stage object detection framework for industrial applications[EB/OL]. (2022-09-07)[2023-06-01]. https://arxiv.org/abs/2209.02976. DOI: 10.48550/arXiv.2209.02976.
[23] WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2023: 7464-7475. DOI: 10.1109/CVPR52729.2023.00721.
[1] XIAO Yuting, LÜ Xiaoqi, GU Yu, LIU Chuanqiang. Classification of Diabetic Retinopathy Based on Split Residual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 91-101.
[2] ZENG Liang, HU Qian, YANG Tengfei, TAN Weiwei. Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(1): 102-110.
[3] ZHOU Qiao, ZHAI Jiangtao, JIA Dongsheng, SUN Haoxiang. A Web Attack Detection Method Based on Convolutional Gated Recurrent Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(6): 51-61.
[4] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[5] CAI Likun, WU Yunbing, CHEN Ganlin, LIU Chongling, LIAO Xiangwen. Category Text Generation Based on Generative Adversarial Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 79-90.
[6] PENG Tao, TANG Jing, HE Kai, HU Xinrong, LIU Junping, HE Ruhan. Emotion Recognition Based on Multi-gait Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 104-111.
[7] XUE Qiwei, WU Xiru. Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 37-48.
[8] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[9] BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11.
[10] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134 -146 .
[2] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[3] WANG Yifan, WANG Hui, LI Xuyang, FANG Hang, WANG Baoquan, JIN Zirong. Survey of Capacity Allocation of Microgrid Hybrid Energy Storage System Based on Hydrogen Energy Storage[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 18 -36 .
[4] TU Guangsheng, KONG Yongjun, SONG Zhechao, YE Kang. Research Progress and Technical Difficulties of Reversible Data Hiding in Encrypted Domain[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 1 -15 .
[5] YANG Yangyang, ZHU Zhenting, YANG Cuiping, LI Shihao, ZHANG Shu, FAN Xiulei, WAN Lei. Research Progress of Anaerobic Digestion Pretreatment of Excess Activated Sludge Based on Bibliometric Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 16 -29 .
[6] XU Lunhui, LI Jinlong, LI Ruonan, CHEN Junyu. Missing Traffic Data Recovery for Road Network Based on Dynamic Generative Adversarial Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 30 -40 .
[7] YANG Hai, XIE Yaqin. Regional Energy Storage Allocation Strategy of 5G Base Station Based on Floyd Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 41 -54 .
[8] YAN Wenwen, WEN Zhong, WANG Shuang, LI Guoxiang, WANG Boyu, WU Yi. AA-CAES Plant and Integrated Demand Response Based Wind Abandonment and Consumption Strategy for the Heating Period[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 55 -68 .
[9] WANG Xuyang, WANG Changrui, ZHANG Jinfeng, XING Mengyi. Multimodal Sentiment Analysis Based on Cross-Modal Cross-Attention Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 84 -93 .
[10] WANG Weiduo, WANG Yisong, YANG Lei. Descriptive Solution of the Answer Set Programming for Cloud Resource Scheduling[J]. Journal of Guangxi Normal University(Natural Science Edition), 2024, 42(2): 94 -104 .