Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (5): 12-23.doi: 10.16088/j.issn.1001-6600.2020.05.002
Previous Articles Next Articles
ZHANG Canlong1,2*, LI Yanru1, LI Zhixin1,2, WANG Zhiwen3
CLC Number:
[1] OJHA S, SAKHARE S. Image processing techniques for object tracking in video surveillance:a survey[C] // 2015 International Conference on Pervasive Computing (ICPC). Piscataway, NJ:IEEE Press, 2015:302-309. DOI: 10.1109/PERVASIVE.2015.7087180. [2] 黄凯奇, 陈晓棠, 康运锋, 等. 智能视频监控技术综述[J]. 计算机学报, 2015, 38(6): 1093-1118. DOI: 10.11897/SP.J.1016.2015.01093. [3] MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C] // Computer Vision-ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part I.Berlin: Springer, 2016: 445-461. DOI: 10.1007/978-3-319-46448-0_27. [4] BOULAHIA S Y, ANQUETIL E, MULTON F, et al. Dynamic hand gesture recognition based on 3D pattern assembled trajectories[C] // 2017 Seventh International Conference on Image Processing Theory, Tools and Applications. Piscataway, NJ: IEEE Press, 2017: 1-6. DOI: 10.1109/IPTA.2017.8310146. [5] SHIEH W Y, HSU C C J, WANG T H. Vehicle positioning and trajectory tracking by infrared signal-direction discrimination for short-range vehicle-to-infrastructure communication systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(2): 368-379. DOI: 10.1109/TITS.2017.2697041. [6] CAI Y X, LI L, NI S L, et al. Moving vehicle detection based on dense SIFT and extreme learning machine for visual surveillance[C] // 2015 IEEE International Conference on Robotics and Biomimetics. Piscataway, NJ: IEEE Press, 2015: 1614-1618. DOI: 10.1109/ROBIO.2015.7419002. [7] CLAUS P, OMAR A M S, PEDRIZZETTI G, et al. Tissue tracking technology for assessing cardiac mechanics: principles, normal values, and clinical applications[J]. JACC: Cardiovascular Imaging, 2015, 8(12): 1444-1460. DOI: 10.1016/j.jcmg.2015.11.001. [8] UNGI T, ABOLMAESUMI P, JALAL R, et al. Spinal needle navigation by tracked ultrasound snapshots[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(10): 2766-2772. DOI: 10.1109/TBME.2012.2209881. [9] LI H X, SHEN C H, SHI Q F. Real-time visual tracking using compressive sensing[C] // Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. 2011: 1305-1312.DOI: 10.1109/CVPR.2011.5995483. [10] 卢湖川, 李佩霞, 王栋. 目标跟踪算法综述[J]. 模式识别与人工智能, 2018, 31(1): 61-76.DOI: 10.16451/j.cnki. issn1003-6059.201801006. [11] 张灿龙, 唐艳平, 李志欣, 等. 基于二阶空间直方图的双核跟踪[J]. 电子与信息学报, 2015, 37(7): 1660-1666. DOI: 10.11999/JEIT141321. [12] 黄宏图, 毕笃彦, 查宇飞, 等. 基于笛卡尔乘积字典的稀疏编码跟踪算法[J]. 电子与信息学报, 2015, 37(3): 516-521. DOI: 10.11999/JEIT140931. [13] ZHOU T R, OUYANG Y N, WANG R, et al. Particle filter based on real-time compressive tracking[C] // 2016 International Conference on Audio, Language and Image Processing. Piscataway, NJ: IEEE Press, 2016: 754-759. DOI: 10.1109/ICALIP.2016.7846666. [14] YUN X, JING Z L, XIAO G, et al. A compressive tracking based on time-space Kalman fusion model[J]. Science China: Information Sciences, 2016, 59(1): 012106. DOI: 10.1007/s11432-015-5356-0. [15] WEN C B, CAI Y Z, LIU Y R, et al. A reduced-order approach to filtering for systems with linear equality constraints[J]. Neurocomputing, 2016, 193: 219-226. DOI: 10.1016/j.neucom.2016.02.020. [16] IMANI M, BRAGA-NETO U M. Particle filters for partially-observed boolean dynamical systems[J]. Automatica, 2018, 87: 238-250. DOI: 10.1016/j.automatica.2017.10.009. [17] ALI A, JALIL A, NIU J W, et al. Visual object tracking: classical and contemporary approaches[J]. Frontiers of Computer Science, 2016, 10(1): 167-188.DOI: 10.1007/s11704-015-4246-3. [18] BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C] // 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Los Alamtios, CA: IEEE Computer Society, 2010: 2544-2550. DOI: 10.1109/CVPR.2010.5539960. [19] HENRIQUES J F, CASEIOR R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C] // Computer Vision-ECCV 2012: 12th European Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part IV. Berlin: Springer, 2012: 702-715. DOI: 10.1007/978-3-642-33765-9_50. [20] HENRIQUES J F, CASEIOR R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. DOI: 10.1109/TPAMI.2014.2345390. [21] DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C] // 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2014: 1090-1097. DOI: 10.1109/CVPR.2014.143. [22] DANELLJAN M,HÄGER G, KHAN F S, et al. Accurate scale estimation for robust visual tracking[C] // Proceedings of the British Machine Vision Conference. Surrey: BMVC Press, 2014: 1-11. DOI: 10.5244/C.28.65. [23] LI Y, ZHU J K, HOI S C H. Reliable patch trackers: robust visual tracking by exploiting reliable patches[C] // 2015 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2015: 353-361. DOI: 10.1109/CVPR.2015.7298632. [24] GÖNEN M, ALPAYDIN E. Multiple kernel learning algorithms[J]. Journal of Machine Learning Research, 2011, 12: 2211-2268. [25] FELZENSAWALB P F, GIRSHICK R B,McALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167. [26] VAN DE WEIJER J, SCHMID C, VERBEEK J, et al. Learning color names for real-world applications[J]. IEEE Transactions on Image Processing, 2009, 18(7): 1512-1523. DOI: 10.1109/TIP.2009.2019809. [27] WU Y, LIM J W, YANG M H. Online object tracking: a benchmark[C] // 2013 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2013: 2411-2418. DOI: 10.1109/CVPR.2013.312. |
[1] | BAI Jie, GAO Haili, WANG Yongzhong, YANG Laibang, XIANG Xiaohang, LOU Xiongwei. Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 1-11. |
|