Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (5): 1-11.doi: 10.16088/j.issn.1001-6600.2020.05.001

    Next Articles

Detection of Students’ Classroom Performance Based on Faster R-CNN and Transfer Learning with Multi-Channel Feature Fusion

BAI Jie1,2, GAO Haili3, WANG Yongzhong4, YANG Laibang4, XIANG Xiaohang4, LOU Xiongwei1,2,5*   

  1. 1. School of Information Engineering, Zhejiang Agriculture and Forestry University, Hangzhou Zhejiang 311300, China;
    2. Key Laboratory of Forestry Intelligent Monitoring and Information Technology of Zhejiang Province, Hangzhou Zhejiang 311300, China;
    3. Forestry Department of Zhejiang Province, Hangzhou Zhejiang 311300, China;
    4. Hangzhou Perception Technology Company Limited, Hangzhou Zhejiang 311300, China;
    5. Key Laboratory of State Forestry and Grassland Administration on Forestry Sensing Technology and Intelligent Equipment, Hangzhou Zhejiang 311300, China
  • Received:2020-01-20 Online:2020-09-25 Published:2020-10-09

Abstract: Course teaching quality is a core content to measure the teaching level of a school, and teaching effect can be directly reflected from the state of students’ attendance. In order to improve students’ class status and promote class discipline, this paper proposes a detection method for students’ classroom behavior based on Faster R-CNN and transfer learning with multi-channel feature fusion. Firstly, images are obtained through the monitoring video of Zhejiang Agriculture and Forestry University and manually annotated, and data augmentation method is used to increase the scale of the images to establish the dataset of common students’ normal classroom behavior. Then, the Inception-ResNet-v2 network based on pre-training is applied for feature extraction, and the target detection framework adopts Faster R-CNN to realize the detection of normal learning, sleeping, lowering head and other student behaviors through transfer learning. Finally, through multi-channel feature fusion method, the shallow features of more detailed information are integrated in deep layers of rich semantic information, so as to gain the improved detection model of the students’ classroom performance. Experimental results show that the mean average precision of the model can reach 76.32%, which is 12.22 percentage points higher than original algorithm, and good detection effect can be achieved. This model has a high accuracy rate for students’ classroom behavior, which indicates that Faster R-CNN with multi-channel feature fusion has a good application prospect in students’ classroom behavior detection, and can provide a new reference for improving classroom teaching quality.

Key words: classroom behavior detection, Faster R-CNN, feature fusion, migration learning

CLC Number: 

  • TP181
[1] 胡小玲. 高校课堂管理现状及对策分析[J].扬州大学学报(高教研究版), 2018, 22(3): 114-120. DOI:10.19411/j.cnki.1007-8606.2018.03.018.
[2] 秦道影. 基于深度学习的学生课堂行为识别[D]. 武汉: 华中师范大学, 2019.
[3] 薛新国. S-T分析法及其在教学中的应用[J]. 江苏教育研究, 2019(10B): 4-8. DOI: 10.13696/j.cnki.jer1673-9094. 2019.29.002.
[4] 武天宏. 弗兰德斯互动分析系统在教学中的应用[J]. 现代教育科学, 2018(2): 101-108, 135. DOI: 10.13980/j.cnki.xdjykx.2018.02.019.
[5] 王政山. 基于视频分析的学生课堂听课状态的系统研发[D]. 乌鲁木齐: 新疆大学, 2019.
[6] 魏艳涛, 秦道影, 胡佳敏, 等. 基于深度学习的学生课堂行为识别[J]. 现代教育技术, 2019, 29(7): 87-91.
[7] 张鸿宇. 课堂学习行为测量系统的设计与实现[D]. 武汉: 华中科技大学, 2016.
[8] 党冬利. 人体行为识别及在教育录播系统中的应用[D]. 西安: 西安科技大学, 2017.
[9] 郭文诚, 崔昊杨, 马宏伟, 等. 基于Zernike矩特征的电力设备红外图像目标识别[J]. 激光与红外, 2019, 49(4): 503-506. DOI: 10.3969/j.issn.1001-5078.2019.04.020.
[10] 张顺, 龚怡宏, 王进军. 深度卷积神经网络的发展及其在计算机视觉领域的应用[J]. 计算机学报, 2019, 42(3): 453-482. DOI: 10.11897/SP.J.1016.2019.00453.
[11] 李瀚超, 蔡毅, 王岭雪. 全局特征提取的全卷积网络图像语义分割算法[J]. 红外技术, 2019, 41(7): 595-599, 615.
[12] 刘立, 詹茵茵, 罗扬, 等. 尺度不变特征变换算子综述[J]. 中国图象图形学报, 2013, 18(8): 885-892. DOI: 10.11834/jig.20130801.
[13] 杨利平, 辜小花. 用于人脸识别的相对梯度直方图特征描述[J]. 光学精密工程, 2014, 22(1): 152-159. DOI: 10.3788/OPE.20142201.0152.
[14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL]. (2014-09-04)[2020-01-08]. https://arxiv.org/abs/1409.1556.
[15] SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C] // 2015 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2014: 1-9. DOI: 10.1109/CVPR.2015.7298594.
[16] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/ CVPR.2016.90.
[17] 严严, 陈日伟, 王菡子. 基于深度学习的人脸分析研究进展[J]. 厦门大学学报(自然科学版), 2017, 56(1): 13-24. DOI: 10.6043/j.issn.0438-0479.201609024.
[18] 廖鹏, 刘宸铭, 苏航, 等. 基于深度学习的学生课堂异常行为检测与分析系统[J]. 电子世界, 2018(8): 97-98. DOI: 10.19353/j.cnki.dzsj.2018.08.054.
[19] 周俊宇, 赵艳明. 卷积神经网络在图像分类和目标检测应用综述[J]. 计算机工程与应用, 2017, 53(13): 34-41. DOI: 10.3778/j.issn.1002-8331.1703-0362.
[20] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C] // 2016 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2016: 779-788. DOI: 10.1109/CVPR.2016.91.
[21] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[EB/OL]. (2015-12-08)[2020-01-08]. https://arxiv.org/abs/1512.02325.
[22] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C] // 2014 IEEE Conference on Computer Vision and Pattern Recognition. Los Alamtios, CA: IEEE Computer Society, 2014: 580-587. DOI: 10.1109/CVPR.2014.81.
[23] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904-1916. DOI: 10.1109/TPAMI.2015.2389824.
[24] GIRSHICK R. Fast R-CNN[C] // 2015 IEEE International Conference on Computer Vision. Los Alamtios, CA: IEEE Computer Society, 2015: 1440-1448. DOI: 10.1109/ICCV.2015.169.
[25] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. DOI: 10.1109/TPAMI.2016.2577031.
[26] 刘英璇,伍锡如,雪刚刚.基于深度学习的道路交通标志多目标实时检测[J]. 广西师范大学学报(自然科学版),2020, 38(2): 96-106. DOI: 10.16088/j.jssn.1001-6600.2020.02.011.
[27] 宋光慧. 基于迁移学习与深度卷积特征的图像标注方法研究[D]. 杭州: 浙江大学, 2017.
[28] SZEGEDYC, IOFFE S, VANHOUCKE V, et al. Inception-v4, Inception-ResNet and the impact of residual connections on learning[EB/OL]. (2016-02-23)[2020-01-08]. https://arxiv.org/abs/1602.07261.
[29] 秦毅, 吴蔚. 基于CNN的计算机生成图像识别方法[J]. 西南师范大学学报(自然科学版), 2019, 44(5): 109-114. DOI: 10.13718/j.cnki.xsxb.2019.05.018.
[30] 周忠义, 吴谨, 朱磊. 基于多路特征融合和深度学习的露霜图像分类[J]. 计算机应用与软件, 2018, 35(10): 205-210, 231. DOI: 10.3969/j.issn.1000-386x.2018.10.037.
[31] LING S, MILAN A, SHEN C H, et al. RefineNet: multi-path refinement networks for high-resolution semantic segmentation[EB/OL]. (2016-11-20)[2020-01-08]. https://arxiv.org/abs/1611.06612.
[32] 陈靓影, 刘乐元, 张坤, 等. 学生课堂注意力检测方法及系统: CN201410836650.X[P]. 2015-04-15.
[1] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] PANG Lin-na, QIU Yan-yan, LU Jia-kuan. On Some Sufficent Conditions of p-Nilpotency of Finite Groups[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 64 -66 .
[2] XU Lunhui, CHEN Kaixun. Prediction of Road Network Speed Distribution Based on BP Neural Network Optimization by Improved Firefly Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 1 -8 .
[3] LI Zhaomei, LI Wenlin, MENG Anxin, ZHAO Zhenchi, QIN Yongfu, LAN Haihui, LU Huijin, CHEN Lisha, LIANG Weigang, SHEN Hongtao. Study of 14C-AMS in Dating of the Ancient Painting[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 38 -43 .
[4] XU Tingting, YU Qiuping, QI Peiyi, LIU Kehui, LI Yi, JIANG Yongrong, YU Fangming. Effects of Different Washing Solutions on the Desorption of Heavy Metals from a Lead-zinc Mine Soil[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 188 -193 .
[5] HAN Bowen. Demand Responsive Transit Scheduling Method Considering Real-time Demand[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 9 -20 .
[6] WU Juan, ZHU Hongyang, MEI Ping, CHEN Wu, LI Zhongbao. Polymethyl Methacrylate Modified Nano-Silica and Its Stabilizing Effect on Pickering Emulsion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 120 -131 .
[7] DU Xuesong,LIN Yong,LIANG Guokun,HUANG Yin,BIN Shiyu, CHEN Zhong,QIN Junqi,ZHAO Yi. Comparison of Low Temperature Resistant Performance between Two Tilapia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 174 -179 .
[8] LI Feiyu, WENG Xiaoxiong, YAO Shushen. Research on the Scaling Law Based on the Travel Time Interval of Passengers’ Group[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 1 -9 .
[9] XIANG Qinqin, LIAO Zhixian, LI Tinghui, JIANG Pinqun, HUANG Guoxian. Research on Modeling and Control of Photovoltaic Microgrid Inverter under Random Disturbance of Power Grid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 19 -25 .
[10] ZHAO Xin , SONG Yingqiang, HU Yueming, LIU Yilun, ZHU Axing. Optimizing Spatial Distribution of Residential Areas by Using Multi-Source Open Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 26 -40 .