Journal of Guangxi Normal University(Natural Science Edition) ›› 2024, Vol. 42 ›› Issue (1): 102-110.doi: 10.16088/j.issn.1001-6600.2023030401

Previous Articles     Next Articles

Substation Personnel Safety Operation Detection Based on L-ConvNeXt Network

ZENG Liang1,2*, HU Qian1,2, YANG Tengfei1,2, TAN Weiwei1,2   

  1. 1. School of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan Hubei 430068, China;
    2. Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System (Hubei University of Technology), Wuhan Hubei 430068, China
  • Received:2023-03-04 Revised:2023-07-26 Online:2024-01-25 Published:2024-01-19

Abstract: A substation personnel detection based on the L-ConvNeXt network is proposed to solve the problems of excessive amount of network parameters and unclear characteristics of operational personnel detection in the complex environment of substations. Firstly, the backbone feature extraction network is built by the lightweight ConvNeXt to enhance the feature extraction capability of the network while keeping the backbone with a low parameter. Then, the transformer prediction head(TPH) is selected as the end detection head to enhance the detection of low-resolution features by the network. Finally, VariFocal Loss is introduced to replace Focal Loss as target loss and confidence loss to improve the loss weight of the network for positive samples. The experimental results on the public dataset of Tianchi show that the proposed network achieves a better detection results, the average detection accuracy reaches 89.6% and the number of model parameters is 13.2×106, which can effectively detect the operation of substation personnel and meet the detection requirements of substation operators in complex scenarios.

Key words: object detection, ConvNeXt, lightweight model, substation, VariFocal Loss

CLC Number:  TP391.41
[1] STEMN E, BOFINGER C, CLIFF D, et al. Failure to learn from safety incidents: status, challenges and opportunities[J]. Safety Science, 2018, 101: 313-325. DOI: 10.1016/j.ssci.2017.09.018.
[2] 国家能源局. 2021年一季度事故分析报告[EB/OL]. (2021-08-10)[2023-03-04]. http://www.nea.gov.cn/2021-08/10/c_1310119210.htm.
[3] 国家能源局. 2021年二季度事故分析报告[EB/OL]. (2021-09-08)[2023-03-04]. http://www.nea.gov.cn/2021-09/08/c_1310175817.htm.
[4] 杜思远. 变电站人员安全帽佩戴识别算法研究[D]. 重庆: 重庆大学, 2017.
[5] FELZENSZWALB P F, GIRSHICK R B, MCALLESTER D, et al. Object detection with discriminatively trained part-based models[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645. DOI: 10.1109/TPAMI.2009.167.
[6] 胡金磊, 周俊煌, 林孝斌, 等. 基于S-HOG+C算子的变电作业人员着装分析方法研究[J]. 机电工程技术, 2018, 47(12): 136-140. DOI: 10.3969/j.issn.1009-9492.2018.12.043.
[7] 吴育武. 适应变电站智能安全监控的运动目标检测及人脸快速识别方法[J]. 机电工程技术, 2019, 48(11): 52-55, 126. DOI: 10.3969/j.issn.1009-9492.2019.11.019.
[8] 严良平, 童静, 王凯, 等. 基于FAST特征的智能安全帽静态报警方法的研究[J]. 电力信息与通信技术, 2019, 17(4): 67-71. DOI: 10.16543/j.2095-641x.electric.power.ict.2019.04.011.
[9] 魏明军, 周太宇, 纪占林, 等. 基于YOLOv3的公共场所口罩佩戴检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(1): 76-86. DOI: 10.16088/j.issn.1001-6600.2022030402.
[10] 李洋, 苟刚. 基于改进YOLOX 的轻量型垃圾分类检测方法[J]. 广西师范大学学报(自然科学版), 2023, 41(3): 80-90. DOI: 10.16088/j.issn.1001-6600.2022100804.
[11] FANG Q, LI H, LUO X C, et al. Detecting non-hardhat-use by a deep learning method from far-field surveillance videos[J]. Automation in Construction, 2018, 85: 1-9. DOI: 10.1016/j.autcon.2017.09.018.
[12] 杨永波, 李栋. 改进YOLOv5的轻量级安全帽佩戴检测算法[J]. 计算机工程与应用, 2022, 58(9): 201-207. DOI: 10.3778/j.issn.1002-8331.2111-0346.
[13] 丘浩, 张炜, 彭博雅, 等. 基于YOLOv3的特定电力作业场景下的违规操作识别算法[J]. 电力科学与技术学报, 2021, 36(3): 195-202. DOI: 10.19781/j.issn.1673-9140.2021.03.024.
[14] REDMON J, FARHADI A. YOLOv3: an incremental improvement[EB/OL]. (2018-04-08)[2023-03-04]. https://arxiv. org/abs/1804.02767. DOI: 10.48550/arXiv.1804.02767.
[15] 王时威. 基于深度学习的电力作业异常行为识别系统的设计与实现[D]. 武汉: 武汉纺织大学, 2021. DOI: 10.27698/d.cnki.gwhxj.2021.000120.
[16] 孙倩, 赵李强, 高雪林. 一种电力施工安全规范模型验证方法[J]. 云南电力技术, 2022, 50(3): 9-14. DOI: 10.3969/j.issn.1006-7345.2022.03.003.
[17] 刘泽西, 张楠, 连婷, 等. 针对轻量化网络的安全帽检测方法[J]. 测控技术, 2022, 41(8): 16-21, 53. DOI: 10.19708/j.ckjs.2022.08.003.
[18] 田枫, 贾昊鹏, 刘芳. 改进YOLOv5的油田作业现场安全着装小目标检测[J]. 计算机系统应用, 2022, 31(3): 159-168. DOI: 10.15888/j.cnki.csa.008359.
[19] 郭奕裕, 周箩鱼. 安全帽佩戴检测网络模型的轻量化设计[J]. 计算机工程, 2023, 49(4): 312-320. DOI: 10.19678/j.issn.1000-3428.0064219.
[20] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2022: 11966-11976. DOI: 10.1109/CVPR52688.2022.01167.
[21] KARPOV P, GODIN G, TETKO I V. A transformer model for retrosynthesis[C]// Artificial Neural Networks and Machine Learning-ICANN 2019: Workshop and Special Sessions. Cham: Springer Nature Switzerland AG, 2019: 817-830. DOI: 10.1007/978-3-030-30493-5_78.
[22] HUANG J H, FANG Y Y, WU Y Z, et al. Swin transformer for fast MRI[J]. Neurocomputing, 2022, 493: 281-304. DOI: 10.1016/j.neucom.2022.04.051.
[23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2): 318-327. DOI: 10.1109/TPAMI.2018.2858826.
[24] ZHANG H Y, WANG Y, DAYOUB F, et al. VarifocalNet: an IoU-aware dense object detector[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2021: 8510-8519. DOI: 10.1109/CVPR46437.2021.00841.
[25] MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[C]// Computer Vision-ECCV 2018: LNCS Volume 11218. Cham: Springer Nature Switzerland AG, 2018: 122-138. DOI: 10.1007/978-3-030-01264-9_8.
[26] ZHAO G S, WANG Y, WANG J. Lightweight intrusion detection model of the Internet of things with hybrid cloud-fog computing[J]. Security and Communication Networks, 2023, 2023: 7107663. DOI: 10.1155/2023/7107663.
[27] 王媛彬, 李媛媛, 段誉, 等. 基于轻量骨干网络和注意力结构的变电设备红外图像识别[J]. 电网技术, 2023, 47(10): 4358-4369.DOI: 10.13335/j.1000-3673.pst.2022.2113.
[1] HUANG Yeqi, WANG Mingwei, YAN Rui, LEI Tao. Surface Quality Detection of Diamond Wire Based on Improved YOLOv5 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 123-134.
[2] LIU Shili, ZHU Xiaohu, LIU Li, FANG Tianrui. Life Cycle Cost Estimation of 110 kV GIS Substation in Anhui Based on Fuzzy Theory [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 24-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LUO Yun-yan, LI Rong-zheng, LI Bing, DING Chen-xu. Optimization of Extraction Process of Alkaloids from Meconopsis horridula Hook. f. & Thomson by Response Surface Methodology[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(4): 84 -90 .
[2] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[3] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[4] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[5] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[6] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[7] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[8] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[9] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[10] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .