Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 86-95.doi: 10.16088/j.issn.1001-6600.2022111401

Previous Articles     Next Articles

Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase

CHENG Lei1,2*, YAN Puxuan3, DU Bohao3, YE Si3, ZOU Huahong1,2   

  1. 1. School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin Guangxi 541004, China;
    2. Guangxi Key Laboratory of Low Carbon Energy Materials (Guangxi Normal University), Guilin Guangxi 541004, China;
    3. School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin Guangxi 541004, China
  • Received:2022-11-14 Revised:2022-12-27 Published:2023-10-09

Abstract: As ultra-low dielectric layer dielectric (ILD) materials, metal-organic frameworks (MOFs) show great application potential in the development of large-scale integrated circuit for high-end chips and other microelectronic devices. In this paper, MOF-2 with good crystallinity was prepared in the aqueous phase at room temperature and pressure, and the lattice parameters were analyzed by Rietveld refinement. Because of molecular structure rearrangement, the crystal structure of MOF-2 was changed into two desolvent products with [Zn(BDC)(DMF)] and [Zn(BDC)(H2O)] during thermal dehydration. After heating at 100 ℃ for 6 h, the phases of these two products were 89% and 11% respectively. The dielectric properties of the products were studied by using dielectric spectrum. It was found that the dielectric constant of MOF-2 prepared in aqueous phase changed greatly with frequency, and the relative dielectric constant was 4-5 above 1 MHz. The synergistic effect of water and DMF molecule had a major impact on the dielectric response of MOF-2 at mid and low frequency. The relative dielectric constant of the product no longer changes with the frequency after heating and remains at about 3.39 (0.1-1 MHz). After removing all solvent molecules, MOF-2 generates [Zn(BDC)] with sheet structure, and the relative dielectric constant is 3.91 (0.1-1 MHz). Based on the dielectric relaxation theory, the dielectric response of MOF-2 could be described by four relaxation mechanisms: dc conductivity in low frequency, synergistic polarization of water molecules and DMF in intermediate frequency, electron/ion displacement polarization in high frequency, and the universal dielectric response (UDR). This study clarified the structural characteristics, dielectric properties and polarization relaxation mechanism of MOF-2 synthesized in aqueous phase and its desolvent products, the result provided a theoretical basis for the application of MOF-2 in the electrical field.

Key words: MOF-2, crystal structure, dielectric property, thermal stability, polarized relaxation

CLC Number:  O641; O76
[1] MENG J S, LIU X J, NIU C J, et al. Advances in metal-organic framework coatings: versatile synthesis and broad applications[J]. Chemical Society Reviews, 2020, 49(10): 3142-3186. DOI: 10.1039/c9cs00806c.
[2] WU H B, LOU X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges[J]. Science Advances, 2017, 3(12): 9252. DOI: 10.1126/sciadv.aap9252.
[3] SUN L, CAMPBELL M G, DINCĂ M. Electrically conductive porous metal-organic frameworks[J]. Angewandte Chemie International Edition, 2016, 55(11): 3566-3579. DOI: 10.1002/anie.201506219.
[4] MENDIRATTA S, USMAN M, LU K L. Expanding the dimensions of metal-organic framework research towards dielectrics[J]. Coordination Chemistry Reviews, 2018, 360: 77-91. DOI: 10.1016/j.ccr.2018.01.005.
[5] WRIGHT F D, CONTE T M. Standards: roadmapping computer technology trends enlightens industry[J]. Computer, 2018, 51(6): 100-103. DOI: 10.1109/MC.2018.2701628.
[6] RYDER M R, ZENG Z X, TITOV K, et al. Dielectric properties of zeolitic imidazolate frameworks in the broad-band infrared regime[J]. The Journal of Physical Chemistry Letters, 2018, 9(10): 2678-2684. DOI:10.1021/acs.jpclett.8b00799.
[7] WARMBIER R, QUANDT A, SEIFERT G. Dielectric properties of selected metal-organic frameworks[J]. The Journal of Physical Chemistry C, 2014, 118(22):11799-11805. DOI: 10.1021/jp5029646.
[8] RYDER M R, DONÀ L, VITILLO J G, et al. Understanding and controlling the dielectric response of metal-organic frameworks[J]. ChemPlusChem, 2018, 83(4): 308-316. DOI: 10.1002/cplu.201700558.
[9] 姜恺悦, 杨重庆, 庄小东. 导电二维配位聚合物框架材料在能源存储及转化领域的应用[J]. 功能高分子学报, 2019, 32(2): 155-177. DOI: 10.14133/j.cnki.1008-9357.20180701001.
[10] CLAUSEN H F, POULSEN R D, BOND A D, et al. Solvothermal synthesis of new metal organic framework structures in the zinc-terephthalic acid-dimethyl formamide system[J]. Journal of Solid State Chemistry, 2005, 178(11): 3342-3351. DOI: 10.1016/j.jssc.2005.08.013.
[11] LI H L, EDDAOUDI M, GROY T L, et al. Establishing microporosity in open metal-organic frameworks: gas sorption isotherms for Zn(BDC)(BDC=1,4-benzenedicarboxylate)[J]. Journal of the American Chemical Society, 1998, 120(33): 8571-8572. DOI: 10.1021/ja981669x.
[12] GETACHEW N, CHEBUDE Y, DIAZ I, et al. Room temperature synthesis of metal organic framework MOF-2[J]. Journal of Porous Materials, 2014, 21(5): 769-773. DOI: 10.1007/s10934-014-9823-6.
[13] LI P Z, MAEDA Y, XU Q. Top-down fabrication of crystalline metal-organic framework nanosheets[J]. Chemical communications, 2011, 47(29): 8436-8438. DOI: 10.1039/c1cc12510a.
[14] SCHWEIGHAUSER L, HARANO K, NAKAMURA E. Experimental study on interconversion between cubic MOF-5 and square MOF-2 arrays[J]. Inorganic Chemistry Communications, 2017, 84: 1-4. DOI: 10.1016/j.inoche.2017.07.009.
[15] EDGAR M, MITCHELL R, SLAWIN A M Z, et al. Solid-state transformations of zinc 1,4-benzenedicarboxylates mediated by hydrogen-bond-forming molecules[J]. Chemistry, 2001, 7(23): 5168-5175. DOI: 10.1002/1521-3765(20011203).
[16] HAWXWELL S M, ADAMS H, BRAMMER L. Two-dimensional metal-organic frameworks containing linear dicarboxylates[J]. Acta Crystallographica Section B: Structural Science, 2006, 62(5): 808-814. DOI: 10.1107/S0108768106033283.
[17] ZHANG Z H, LIU B, XU L, et al. Combination effect of ionic liquid components on the structure and properties in 1,4-benzenedicarboxylate based zinc metal-organic frameworks[J]. Dalton Transactions, 2015, 44(41): 17980-17989. DOI: 10.1039/c5dt02672e.
[18] BISWAL D, KUSALIK P G. Probing molecular mechanisms of self-assembly in metal-organic frameworks[J]. ACS Nano, 2017, 11(1): 258-268. DOI: 10.1021/acsnano.6b05444.
[19] 李翰如. 电介质物理导论[M]. 成都:成都科技大学出版社,1990:127-130.
[20] 赵双孔. 介电谱方法及应用[M]. 北京:化学工业出版社,2008:89-99.
[21] COLE K S, COLE R H. Dispersion and absorption in dielectrics I. Alternating current characteristics[J]. The Journal of Chemical Physics, 1941, 9(4): 341-351. DOI: 10.1063/1.1750906.
[22] JONSCHER A K. Dielectric relaxation in solids[J]. Journal of Physics D: Applied Physics, 1999, 32(14): 57-70. DOI: 10.1088/0022-3727/32/14/201.
[1] XIE Tingting, XIE Yao, NI Qingling. Synthesis, Characterization and Crystal Structures of Complexes ContainingOrganic Phosphine Gold Acetylene and Triazoles [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 92-99.
[2] HUANG Xueren, ZHAO Zhiyuan, JIANG Yimin. Synthesis, Crystal Structure and Luminescent Properties ofa New 2D Coordination Polymer of Zn(Ⅱ)-ttp(4′-(4-carboxyphenyl) -2,2′:6′,2″-terpyridine) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 98-104.
[3] WANG Yana, LIN Jiahuang, NI Qingling, ZHANG Fang, YU Ronghua, WANG Xiujian. Synthesis and Crystal Structure of 2-[1,3-bis(2-hydroxy benzyl)-5-pyridyl-4-imidazolidinyl] phenol [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(2): 105-110.
[4] LIU Han-fu, MA Xian-li, CHEN Su-yi , SHEN Xue-song, HUANG Fu-ping. Synthesis and Antibacterial Activity of Ternary Zinc Complex [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 103-107.
[5] LIANG Xiao-long, HUANG Wan-yun, PAN Cheng-xue, SU Gui-fa. Synthesis and Crystal Structure of Ethyl 5-acetamido-4-(4-chlorophenyl)-2-methyl-6-oxo-5, 6-dihydro-4H-pyran-3-carboxylate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(2): 82-87.
[6] JIANG Li-ping, HUANG Wan-yun, LIU Dong-cheng, LIANG Fu-pei. Synthesis and Crystal Structures of Zn(Ⅱ) and Cu(Ⅱ) Complexes of 2,2′-dihydroxy[1,1′-binaphthalene]-3,3′-dicarbonylbis(salicylaldehydehydrazone) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 93-98.
[7] HUO Hong-yue, LI Zhong-qing, QIN Qi-pin, LIU Yan-cheng, CHEN Zhen-feng. Crystal Structure and Antitumor Activity of Zinc(Ⅱ) Complex with Schiff Bases Derived from 2-Hydroxy-3-methoxybenzaldehyde and 2-(3,4-Methylenedioxyphenyl) ethylamine [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(3): 65-73.
[8] WU Rui, ZHANG Nan-xi, ZHANG Xiao. Synthesis,Structural Characterization and Magnetic Property of Cu[N(CH2OH)2CH2O](SCN) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(4): 78-83.
[9] ZENG Jian-qiang, LIANG Guang-ming, HUANG Ying-da, YANG Kun-guo, GUI Liu-cheng, NI Qing-ling. Hydrogen-bonding Directed Three-dimensional Supramolecular Structure in Catena-((μ2-4,4'-bipyridine)-tetraaqua-cobalt(Ⅱ) bis (2-methylbenzimidazolium-1,3-diacetate) dehydrate): Synthesis and Crystal Structural Characterization [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 69-75.
[10] CHEN Si-yuan, YANG Yang, PENG Yan, LIU Yan-cheng. Crystal Structure and Antitumor Activity of a New Schiff Base Palladium Complex [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(2): 81-86.
[11] ZHANG Zhong, HU Kun, LIN Xin-liang, SUN Ying-ying. Synthesis,Crystal Structure and Spectroscopic Studies of 2-[2-(1H- 1,2,4-Trizole-1-yl)ethyl]-1H-Benzimidazole Hemihydrate [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 57-61.
[12] LI Hai-ye, JIANG Yi-min, MENG Xiu-jin. Synthesis and Crystal Structure of Phenanthroline-Cysteic Acid Cobalt(Ⅱ) Ternary Complex [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 72-75.
[13] WANG Xiu-jian, CONG Xin-yu, JIANG Xuan-feng, MA Kai, ZHANG Zhi-hao, ZENG Jian-qiang, NI Qing-ling. Synthesis,Crystal Structure and Characterization of One-Dimensional Au-Organophosphine Complex Based on Intermolecular Au…Au Interactions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 189-193.
[14] ZHANG Liu-sheng, PAN Cheng-xue, LI Li, SU Gui-fa, HUANG Wan-yun, QIN Jiang-ke, TANG Huang. Synthesis and Crystal Structure of Conformationally ConstrainedDipeptide with 1-Aminocyclopropanecarboxylic Acid Residue [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(3): 37-42.
[15] HUANG Wan-yun, SU Gui-fa, PAN Cheng-xue, QIN Jiang-ke, TANG Huang, YI Xiang-hui. Synthesis and Crystal Structure of Conformationally Constrained Peptides with a Trans-2,3-diaryl-1-aminocyclopropanecarboxylic Acid Residue [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 56-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[6] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[7] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[8] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[9] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .
[10] WANG Wei, DENG Hua, HU Lening, LI Yang. Adsorption Performance of Red Mud-Sodium Alginate Hydrogel on Pb(Ⅱ) in Water[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 105 -115 .