Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 105-115.doi: 10.16088/j.issn.1001-6600.2022110901
Previous Articles Next Articles
WANG Wei1,2, DENG Hua1,2*, HU Lening1,2, LI Yang3
[1] QIAO A H, CUI M, HUANG R L, et al. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes[J]. Carbohydrate Polymers, 2021, 272: 118471. DOI: 10.1016/j.carbpol.2021.118471. [2] BOLISETTY S, PEYDAYESH M, MEZZENGA R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487. DOI: 10.1039/c8cs00493e. [3] ASSI M A, HEZMEE M N M, HARON A W, et al. The detrimental effects of lead on human and animal health[J]. Veterinary World, 2016, 9(6): 660-671. DOI: 10.14202/vetworld.2016.660-671. [4] 邓华,李秋燕,周瑞爽,等.短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J].广西师范大学学报(自然科学版),2021,39(3):102-112.DOI:10.16088/j.issn.1001-6600.2020061103. [5] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. DOI: 10.1016/j.jclepro.2018.01.133. [6] CHEN Q Y, YAO Y, LI X Y, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 2018, 26: 289-300. DOI: 10.1016/j.jwpe.2018.11.003. [7] CASTRO-MUÑOZ R, GONZÁLEZ-MELGOZA L L, GARCÍA-DEPRAECT O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water[J]. Chemosphere, 2021, 270: 129421. DOI: 10.1016/j.chemosphere.2020.129421. [8] ZHANG Y X, LUO J, ZHANG H S, et al. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: a review[J]. Science of the Total Environment, 2022, 852: 158201. DOI: 10.1016/j.scitotenv.2022.158201. [9] LIN J Y, KIM M, LI D, et al. The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization[J]. Chemosphere, 2020, 247: 125867. DOI: 10.1016/j.chemosphere.2020.125867. [10] POWER G, GRÄFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. DOI: 10.1016/j.hydromet.2011.02.006. [11] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. DOI: 10.1016/j.resconrec.2018.11.006. [12] LUU T T, DINH V P, NGUYEN Q H, et al. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan[J]. Chemosphere, 2022, 287(Pt 3): 132279. DOI: 10.1016/j.chemosphere.2021.132279. [13] BAI X S, LIN J W, ZHANG Z B, et al. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency[J]. Environmental Science and Pollution Research International, 2022, 29(34): 51793-51814. DOI: 10.1007/s11356-022-19506-2. [14] YANG T X, WANG Y F, SHENG L X, et al. Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption[J]. Journal of Environmental Management, 2020, 255: 109866. DOI: 10.1016/j.jenvman.2019.109866. [15] TANDEKAR S, KORDE S, JUGADE R M. Red mud-chitosan microspheres for removal of coexistent anions of environmental significance from water bodies[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100128. DOI: 10.1016/j.carpta.2021.100128. [16] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of lead from water using calcium alginate beads doped with hydrazine sulphate-activated red mud as adsorbent[J]. Journal of Analytical Methods in Chemistry, 2017, 2017: 4650594. DOI: 10.1155/2017/4650594. [17] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of fluoride from water using H2O2-treated fine red mud doped in Zn-alginate beads as adsorbent[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 906-916. DOI: 10.1016/j.jece.2018.01.014. [18] OMRANI N, NEZAMZADEH-EJHIEH A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite[J]. Separation and Purification Technology, 2020, 235: 116228. DOI: 10.1016/j.seppur.2019.116228. [19] WANG Q R, ZHENG C L, SHEN Z X, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359: 265-274. DOI: 10.1016/j.cej.2018.11.130. [20] 邓华,张俊渝,黄瑞,等.竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J].广西师范大学学报(自然科学版),2023,41(1):131-142.DOI:10.16088/j.issn.1001-6600.2022010501. [21] 刘江龙,郭焱,何小山,等.硅烷化赤泥的制备及其对水中铅离子吸附性能分析[J].环境工程,2019,37(11):36-44.DOI:10.13205/j.hjgc.201911006. [22] 刘睿,刘立恒,黄蓉,等.硫酸钙/污泥基生物炭对水中铅的吸附性能研究[J].工业水处理,2021,41(5):46-52.DOI:10.11894/iwt.2020-0733. [23] ZHANG S Y, ARKIN K, ZHENG Y X, et al. Preparation of a composite material based on self-assembly of biomass carbon dots and sodium alginate hydrogel and its green, efficient and visual adsorption performance for Pb2+[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106921. DOI: 10.1016/j.jece.2021.106921. [24] 艾硕,玉万国,黄承都.羧甲基纤维素钠炭化物吸附水中铅离子研究[J].水处理技术,2022,48(10):57-62.DOI:10.16796/j.cnki.1000-3770.2022.10.011. [25] MOSLEH N, NAJMI M, PARANDI E, et al. Magnetic sporopollenin supported polyaniline developed for removal of Lead ions from wastewater: kinetic, isotherm and thermodynamic studies[J]. Chemosphere, 2022, 300: 134461. DOI: 10.1016/j.chemosphere.2022.134461. [26] MINALE M, GU Z L, GUADIE A, et al. Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water[J]. Chemosphere, 2021, 272: 129902. DOI: 10.1016/j.chemosphere.2021.129902. [27] YANG P, GUO D B, CHEN Z H, et al. Removal of Cr(VI) from aqueous solution using magnetic biochar synthesized by a single step method[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1665-1674. DOI: 10.1080/01932691.2016.1272058. [28] ALBADARIN A B, MANGWANDI C, AL-MUHTASEB A H, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal, 2012, 179: 193-202. DOI: 10.1016/j.cej.2011.10.080. [29] CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. DOI: 10.1346/CCMN.2008.0560407. [30] KARZAR JEDDI M, MAHKAM M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2019, 135: 829-838. DOI: 10.1016/j.ijbiomac.2019.05.210. [31] PUTTIPIPATKHACHORN S, PONGJANYAKUL T, PRIPREM A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics[J]. International Journal of Pharmaceutics, 2005, 293(1/2): 51-62. DOI: 10.1016/j.ijpharm.2004.12.006. [32] LI J W, MA J W, CHEN S J, et al. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property[J]. Materials Science and Engineering: C, 2018, 89: 25-32. DOI: 10.1016/j.msec.2018.03.023. [33] SAHU R C, PATEL R K, RAY B C. Neutralization of red mud using CO2 sequestration cycle[J]. Journal of Hazardous Materials, 2010, 179(1/3): 28-34. DOI: 10.1016/j.jhazmat.2010.02.052. [34] LIU X M, ZHANG N, SUN H H, et al. Structural investigation relating to the cementitious activity of bauxite residue-red mud[J]. Cement and Concrete Research, 2011, 41(8): 847-853. DOI: 10.1016/j.cemconres.2011.04.004. [35] YADAV V S, PRASAD M, KHAN J, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1044-1050. DOI: 10.1016/j.jhazmat.2009.11.146. [36] MILONJIĆ S K, RUVARAC A L, UIĆ M V. The heat of immersion of natural magnetite in aqueous solutions[J]. Thermochimica Acta, 1975, 11(3): 261-266. DOI: 10.1016/0040-6031(75)85095-7. [37] WANG L, SHI C X, WANG L, et al. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review[J]. Nanoscale, 2020, 12(8): 4790-4815. DOI: 10.1039/c9nr09274a. [38] ZHANG X, LV L, QIN Y Z, et al. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood[J]. Bioresource Technology, 2018, 256: 1-10. DOI: 10.1016/j.biortech.2018.01.145. [39] 崔姗姗,王宁,顾汉念.CaCl2废液在赤泥脱碱中的应用[J].化工环保,2016,36(5):553-556.DOI:10.3969/j.issn.1006-1878.2016.05.015. [40] PARADIS M, DUCHESNE J, LAMONTAGNE A, et al. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings[J]. Applied Geochemistry, 2007, 22(11): 2326-2333. DOI: 10.1016/j.apgeochem.2007.04.021. [41] PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata[J]. Journal of Hazardous Materials, 2006, 137(3): 1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017. |
[1] | XU Xiangwei, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Adsorption of Crystalline Violet by Bacillus sp. LM-24 in Deep Sea [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 221-231. |
[2] | CHEN Menglin, CHEN Yuhang, FENG Jinyu, GAO Shu, HUANG Zhi, SU Chengyuan, LIN Xiangfeng. Adsorption Performance of Hot Oxygen Stream Modified Sepiolite and Its Regeneration Using Auramine O as Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 232-241. |
[3] | DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142. |
[4] | DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112. |
[5] | WANG Nana, ZHANG Xiang. Adsorption Properties of PAN-based Weakly Basic Ion Exchange Fiber for Zn2+ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 86-94. |
[6] | LIN Haijiao, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Immobilization of Lipase by Crosslinking and Then AdsorptionMethod Using Macroporous Adsorbent Resin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 100-108. |
[7] | WU Juan,ZOU Hua,MEI Ping. Surface Properties of Carboxylate Gemini Surfactant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 78-86. |
[8] | QIN Fang, JIANG Qin-feng, WANG Ting, WANG Yu-rong, FENG Ji-qing, CHEN Jin-yi. Removal Capacity of Microcystis aeruginosaby Mg/Al Hydrotalcite and Zn/Al Hydrotalcite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 115-121. |
|