Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 105-115.doi: 10.16088/j.issn.1001-6600.2022110901

Previous Articles     Next Articles

Adsorption Performance of Red Mud-Sodium Alginate Hydrogel on Pb(Ⅱ) in Water

WANG Wei1,2, DENG Hua1,2*, HU Lening1,2, LI Yang3   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection(Guangxi Normal University) Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China;
    3. Guangxi Zhuang Autonomous Region Academy of Environmental Protection Science, Nanning Guangxi 530022, China
  • Received:2022-11-09 Revised:2023-03-04 Published:2023-10-09

Abstract: Red mud-sodium alginate hydrogel (RMSA) was prepared by cross-linking reaction using red mud and sodium alginate as raw materials. The effects of initial pH of solution, adsorption temperature, adsorption time, initial concentration and multiple heavy metal systems on the adsorption effect of RMSA on Pb(Ⅱ) were investigated by batch experiments and combined with XRD, FTIR and SEM-EDS characterization analysis, its adsorption characteristics on Pb(Ⅱ) was studied. The experimental results showed that the proposed secondary kinetic adsorption model and Langmuir adsorption isotherm model could better describe the adsorption process of RMSA on Pb(Ⅱ), which belonged to single molecular layer chemisorption. The maximum theoretical adsorption capacity of RMSA on Pb(Ⅱ) was 454.54 mg/g under the optimal conditions of pH=6, temperature of 25 ℃, adsorption time of 900 min and initial concentration of Pb(Ⅱ) of 30-900 mg/L. The adsorption of RMSA on Pb(Ⅱ) was more selective in the adsorption experiments of multivariate heavy metal systems. The analysis showed that ion exchange was the main mechanism of Pb(Ⅱ) adsorption by RMSA. In addition, RMSA still maintained high adsorption performance in the five-cycle experiment, which had a good application prospect in terms of economic applicability.

Key words: red mud, hydrogel, Pb(Ⅱ), sodium alginate, adsorption

CLC Number:  X53
[1] QIAO A H, CUI M, HUANG R L, et al. Advances in nanocellulose-based materials as adsorbents of heavy metals and dyes[J]. Carbohydrate Polymers, 2021, 272: 118471. DOI: 10.1016/j.carbpol.2021.118471.
[2] BOLISETTY S, PEYDAYESH M, MEZZENGA R. Sustainable technologies for water purification from heavy metals: review and analysis[J]. Chemical Society Reviews, 2019, 48(2): 463-487. DOI: 10.1039/c8cs00493e.
[3] ASSI M A, HEZMEE M N M, HARON A W, et al. The detrimental effects of lead on human and animal health[J]. Veterinary World, 2016, 9(6): 660-671. DOI: 10.14202/vetworld.2016.660-671.
[4] 邓华,李秋燕,周瑞爽,等.短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J].广西师范大学学报(自然科学版),2021,39(3):102-112.DOI:10.16088/j.issn.1001-6600.2020061103.
[5] AHMAD Z, GAO B, MOSA A, et al. Removal of Cu(II), Cd(II) and Pb(II) ions from aqueous solutions by biochars derived from potassium-rich biomass[J]. Journal of Cleaner Production, 2018, 180: 437-449. DOI: 10.1016/j.jclepro.2018.01.133.
[6] CHEN Q Y, YAO Y, LI X Y, et al. Comparison of heavy metal removals from aqueous solutions by chemical precipitation and characteristics of precipitates[J]. Journal of Water Process Engineering, 2018, 26: 289-300. DOI: 10.1016/j.jwpe.2018.11.003.
[7] CASTRO-MUÑOZ R, GONZÁLEZ-MELGOZA L L, GARCÍA-DEPRAECT O. Ongoing progress on novel nanocomposite membranes for the separation of heavy metals from contaminated water[J]. Chemosphere, 2021, 270: 129421. DOI: 10.1016/j.chemosphere.2020.129421.
[8] ZHANG Y X, LUO J, ZHANG H S, et al. Synthesis and adsorption performance of three-dimensional gels assembled by carbon nanomaterials for heavy metal removal from water: a review[J]. Science of the Total Environment, 2022, 852: 158201. DOI: 10.1016/j.scitotenv.2022.158201.
[9] LIN J Y, KIM M, LI D, et al. The removal of phosphate by thermally treated red mud from water: the effect of surface chemistry on phosphate immobilization[J]. Chemosphere, 2020, 247: 125867. DOI: 10.1016/j.chemosphere.2020.125867.
[10] POWER G, GRÄFE M, KLAUBER C. Bauxite residue issues: I. Current management, disposal and storage practices[J]. Hydrometallurgy, 2011, 108(1/2): 33-45. DOI: 10.1016/j.hydromet.2011.02.006.
[11] KHAIRUL M A, ZANGANEH J, MOGHTADERI B. The composition, recycling and utilisation of Bayer red mud[J]. Resources, Conservation and Recycling, 2019, 141: 483-498. DOI: 10.1016/j.resconrec.2018.11.006.
[12] LUU T T, DINH V P, NGUYEN Q H, et al. Pb(II) adsorption mechanism and capability from aqueous solution using red mud modified by chitosan[J]. Chemosphere, 2022, 287(Pt 3): 132279. DOI: 10.1016/j.chemosphere.2021.132279.
[13] BAI X S, LIN J W, ZHANG Z B, et al. Immobilization of lead, copper, cadmium, nickel, and zinc in sediment by red mud: adsorption characteristics, mechanism, and effect of dosage on immobilization efficiency[J]. Environmental Science and Pollution Research International, 2022, 29(34): 51793-51814. DOI: 10.1007/s11356-022-19506-2.
[14] YANG T X, WANG Y F, SHENG L X, et al. Enhancing Cd(II) sorption by red mud with heat treatment: Performance and mechanisms of sorption[J]. Journal of Environmental Management, 2020, 255: 109866. DOI: 10.1016/j.jenvman.2019.109866.
[15] TANDEKAR S, KORDE S, JUGADE R M. Red mud-chitosan microspheres for removal of coexistent anions of environmental significance from water bodies[J]. Carbohydrate Polymer Technologies and Applications, 2021, 2: 100128. DOI: 10.1016/j.carpta.2021.100128.
[16] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of lead from water using calcium alginate beads doped with hydrazine sulphate-activated red mud as adsorbent[J]. Journal of Analytical Methods in Chemistry, 2017, 2017: 4650594. DOI: 10.1155/2017/4650594.
[17] NAGA BABU A, KRISHNA MOHAN G V, KALPANA K, et al. Removal of fluoride from water using H2O2-treated fine red mud doped in Zn-alginate beads as adsorbent[J]. Journal of Environmental Chemical Engineering, 2018, 6(1): 906-916. DOI: 10.1016/j.jece.2018.01.014.
[18] OMRANI N, NEZAMZADEH-EJHIEH A. Focus on scavengers’ effects and GC-MASS analysis of photodegradation intermediates of sulfasalazine by Cu2O/CdS nanocomposite[J]. Separation and Purification Technology, 2020, 235: 116228. DOI: 10.1016/j.seppur.2019.116228.
[19] WANG Q R, ZHENG C L, SHEN Z X, et al. Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water[J]. Chemical Engineering Journal, 2019, 359: 265-274. DOI: 10.1016/j.cej.2018.11.130.
[20] 邓华,张俊渝,黄瑞,等.竹炭负载氧化锌对Cr(Ⅵ)的吸附性能和机理[J].广西师范大学学报(自然科学版),2023,41(1):131-142.DOI:10.16088/j.issn.1001-6600.2022010501.
[21] 刘江龙,郭焱,何小山,等.硅烷化赤泥的制备及其对水中铅离子吸附性能分析[J].环境工程,2019,37(11):36-44.DOI:10.13205/j.hjgc.201911006.
[22] 刘睿,刘立恒,黄蓉,等.硫酸钙/污泥基生物炭对水中铅的吸附性能研究[J].工业水处理,2021,41(5):46-52.DOI:10.11894/iwt.2020-0733.
[23] ZHANG S Y, ARKIN K, ZHENG Y X, et al. Preparation of a composite material based on self-assembly of biomass carbon dots and sodium alginate hydrogel and its green, efficient and visual adsorption performance for Pb2+[J]. Journal of Environmental Chemical Engineering, 2022, 10(1): 106921. DOI: 10.1016/j.jece.2021.106921.
[24] 艾硕,玉万国,黄承都.羧甲基纤维素钠炭化物吸附水中铅离子研究[J].水处理技术,2022,48(10):57-62.DOI:10.16796/j.cnki.1000-3770.2022.10.011.
[25] MOSLEH N, NAJMI M, PARANDI E, et al. Magnetic sporopollenin supported polyaniline developed for removal of Lead ions from wastewater: kinetic, isotherm and thermodynamic studies[J]. Chemosphere, 2022, 300: 134461. DOI: 10.1016/j.chemosphere.2022.134461.
[26] MINALE M, GU Z L, GUADIE A, et al. Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water[J]. Chemosphere, 2021, 272: 129902. DOI: 10.1016/j.chemosphere.2021.129902.
[27] YANG P, GUO D B, CHEN Z H, et al. Removal of Cr(VI) from aqueous solution using magnetic biochar synthesized by a single step method[J]. Journal of Dispersion Science and Technology, 2017, 38(11): 1665-1674. DOI: 10.1080/01932691.2016.1272058.
[28] ALBADARIN A B, MANGWANDI C, AL-MUHTASEB A H, et al. Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent[J]. Chemical Engineering Journal, 2012, 179: 193-202. DOI: 10.1016/j.cej.2011.10.080.
[29] CASTALDI P, SILVETTI M, SANTONA L, et al. XRD, FTIR, and thermal analysis of bauxite ore-processing waste (red mud) exchanged with heavy metals[J]. Clays and Clay Minerals, 2008, 56(4): 461-469. DOI: 10.1346/CCMN.2008.0560407.
[30] KARZAR JEDDI M, MAHKAM M. Magnetic nano carboxymethyl cellulose-alginate/chitosan hydrogel beads as biodegradable devices for controlled drug delivery[J]. International Journal of Biological Macromolecules, 2019, 135: 829-838. DOI: 10.1016/j.ijbiomac.2019.05.210.
[31] PUTTIPIPATKHACHORN S, PONGJANYAKUL T, PRIPREM A. Molecular interaction in alginate beads reinforced with sodium starch glycolate or magnesium aluminum silicate, and their physical characteristics[J]. International Journal of Pharmaceutics, 2005, 293(1/2): 51-62. DOI: 10.1016/j.ijpharm.2004.12.006.
[32] LI J W, MA J W, CHEN S J, et al. Adsorption of lysozyme by alginate/graphene oxide composite beads with enhanced stability and mechanical property[J]. Materials Science and Engineering: C, 2018, 89: 25-32. DOI: 10.1016/j.msec.2018.03.023.
[33] SAHU R C, PATEL R K, RAY B C. Neutralization of red mud using CO2 sequestration cycle[J]. Journal of Hazardous Materials, 2010, 179(1/3): 28-34. DOI: 10.1016/j.jhazmat.2010.02.052.
[34] LIU X M, ZHANG N, SUN H H, et al. Structural investigation relating to the cementitious activity of bauxite residue-red mud[J]. Cement and Concrete Research, 2011, 41(8): 847-853. DOI: 10.1016/j.cemconres.2011.04.004.
[35] YADAV V S, PRASAD M, KHAN J, et al. Sequestration of carbon dioxide (CO2) using red mud[J]. Journal of Hazardous Materials, 2010, 176(1/2/3): 1044-1050. DOI: 10.1016/j.jhazmat.2009.11.146.
[36] MILONJIĆ S K, RUVARAC A L, ŠUŠIĆ M V. The heat of immersion of natural magnetite in aqueous solutions[J]. Thermochimica Acta, 1975, 11(3): 261-266. DOI: 10.1016/0040-6031(75)85095-7.
[37] WANG L, SHI C X, WANG L, et al. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: a review[J]. Nanoscale, 2020, 12(8): 4790-4815. DOI: 10.1039/c9nr09274a.
[38] ZHANG X, LV L, QIN Y Z, et al. Removal of aqueous Cr(VI) by a magnetic biochar derived from Melia azedarach wood[J]. Bioresource Technology, 2018, 256: 1-10. DOI: 10.1016/j.biortech.2018.01.145.
[39] 崔姗姗,王宁,顾汉念.CaCl2废液在赤泥脱碱中的应用[J].化工环保,2016,36(5):553-556.DOI:10.3969/j.issn.1006-1878.2016.05.015.
[40] PARADIS M, DUCHESNE J, LAMONTAGNE A, et al. Long-term neutralisation potential of red mud bauxite with brine amendment for the neutralisation of acidic mine tailings[J]. Applied Geochemistry, 2007, 22(11): 2326-2333. DOI: 10.1016/j.apgeochem.2007.04.021.
[41] PAPAGEORGIOU S K, KATSAROS F K, KOUVELOS E P, et al. Heavy metal sorption by calcium alginate beads from Laminaria digitata[J]. Journal of Hazardous Materials, 2006, 137(3): 1765-1772. DOI: 10.1016/j.jhazmat.2006.05.017.
[1] XU Xiangwei, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Adsorption of Crystalline Violet by Bacillus sp. LM-24 in Deep Sea [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 221-231.
[2] CHEN Menglin, CHEN Yuhang, FENG Jinyu, GAO Shu, HUANG Zhi, SU Chengyuan, LIN Xiangfeng. Adsorption Performance of Hot Oxygen Stream Modified Sepiolite and Its Regeneration Using Auramine O as Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(3): 232-241.
[3] DENG Hua, ZHANG Junyu, HUANG Rui, WANG Wei, HU Lening. Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ) [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 131-142.
[4] DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112.
[5] WANG Nana, ZHANG Xiang. Adsorption Properties of PAN-based Weakly Basic Ion Exchange Fiber for Zn2+ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 86-94.
[6] LIN Haijiao, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Immobilization of Lipase by Crosslinking and Then AdsorptionMethod Using Macroporous Adsorbent Resin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 100-108.
[7] WU Juan,ZOU Hua,MEI Ping. Surface Properties of Carboxylate Gemini Surfactant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 78-86.
[8] QIN Fang, JIANG Qin-feng, WANG Ting, WANG Yu-rong, FENG Ji-qing, CHEN Jin-yi. Removal Capacity of Microcystis aeruginosaby Mg/Al Hydrotalcite and Zn/Al Hydrotalcite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DONG Shulong, MA Jiangming, XIN Wenjie. Research Progress and Trend of Landscape Visual Evaluation —Knowledge Atlas Analysis Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 1 -13 .
[2] GUO Jialiang, JIN Ting. Semantic Enhancement-Based Multimodal Sentiment Analysis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 14 -25 .
[3] WU Zhengqing, CAO Hui, LIU Baokai. Chinese Fake Review Detection Based on Attention Convolutional Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 26 -36 .
[4] LIANG Zhengyou, CAI Junmin, SUN Yu, CHEN Lei. Point Cloud Classification Based on Residual Dynamic Graph Convolution and Feature Enhancement[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 37 -48 .
[5] OUYANG Shuxin, WANG Mingjun, RONG Chuitian, SUN Huabo. Anomaly Detection of Multidimensional QAR Data Based on Improved LSTM[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 49 -60 .
[6] LI Yiyang, ZENG Caibin, HUANG Zaitang. Random Attractors for Chemostat Model with Wall Attachment Driven by Fractional Brownian Motion[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 61 -68 .
[7] LI Pengbo, LI Yongxiang. Radial Symmetric Solutions of p-Laplace Equations on Exterior Domains[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 69 -75 .
[8] WU Zixian, CHENG Jun, FU Jianling, ZHOU Xinwen, XIE Jialong, NING Quan. Analysis of PI-based Event-Triggered Control Design for Semi-Markovian Power Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 76 -85 .
[9] CHENG Lei, YAN Puxuan, DU Bohao, YE Si, ZOU Huahong. Thermal Stability and Dielectric Relaxation of MOF-2 Synthesized in Aqueous Phase[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 86 -95 .
[10] LIU Meiyu, ZHANG Jinyan, ZHOU Tongxi, LIAO Guangfeng, YANG Xinzhou, LU Rumei. A New C21 Steroidal Glycoside from Gymnema sylvestre and Its Hypoglycemic Activity[J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(5): 96 -104 .