Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (1): 131-142.doi: 10.16088/j.issn.1001-6600.2022010501

Previous Articles     Next Articles

Adsorption Capacity and Mechanism of ZnO Loading Bamboo Biochar for Cr(Ⅵ)

DENG Hua1,2*, ZHANG Junyu1,2, HUANG Rui1,2, WANG Wei1,2, HU Lening1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Edncation, Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2022-01-05 Revised:2022-03-03 Online:2023-01-25 Published:2023-03-07

Abstract: Zn-modified biochar (ZnBC) was prepared from bamboo biochar by co-precipitation loading ZnO. The adsorption performance of ZnBC for Cr(Ⅵ) in wastewater was investigated by batch experiments. The ZnBC before and after adsorption was characterized by SEM, XRD, FTIR and XPS. The experimental results show that the adsorption of Cr(Ⅵ) by ZnBC is the best at pH=7, reaction time 720 min and reaction temperature 298 K. The adsorption results of Cr(Ⅵ) conform to the pseudo-second-order (PSO) and Langmuir model theory, indicating that the adsorption types are chemical adsorption and monolayer adsorption. The saturated adsorption capacity fitted by Langmuir model is 106.383 mg/g. The coexisting ion experiments show that ZnBC has good selective adsorption for Cr(Ⅵ). The adsorption mechanism of Cr(Ⅵ) by ZnBC mainly includes photocatalytic reduction, functional group complexation, cation-π and precipitation. The results show that ZnBC has great application potential as adsorbent for removing Cr(Ⅵ) from aqueous solution.

Key words: bamboo biochar, co-precipitation, ZnO, Cr(Ⅵ), adsorption mechanism

CLC Number: 

  • X522
[1] 郑海霞,王月,陈芬,等. 五台山南台土壤重金属特征及污染风险评价[J]. 广西师范大学学报(自然科学版),2018,36(4):99-107. DOI:10.16088/j.issn.1001-6600.2018.04.013.
[2]ZHANG Y T,BOPARAI H K,WANG J G,et al. Effect of low permeability zone location on remediation of Cr(VI)-contaminated media by electrokinetics combined with a modified-zeolite barrier[J]. Journal of Hazardous Materials,2022,426:127785. DOI:10.1016/j.jhazmat.2021.127785.
[3]XU X Y,HUANG H,ZHANG Y,et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(VI) during its sorption[J]. Environmental Pollution,2019,244:423-430. DOI:10.1016/j.envpol.2018.10.068.
[4]WANG H,TIAN Z Z,JIANG L,et al. Highly efficient adsorption of Cr(VI) from aqueous solution by Fe3+ impregnated biochar[J]. Journal of Dispersion Science and Technology,2017,38(6):815-825. DOI:10.1080/01932691.2016.1203333.
[5]中华人民共和国卫生部,中国国家标准化管理委员会.生活饮用水卫生标准:GB/T 5749—2006[S]. 北京:中国标准出版社,2007.
[6]李金英,孙海峰,赵旭,等. 改性类石墨相氮化碳复合催化剂可见光催化还原水中Cr6+的研究[J]. 化工新型材料,2020,48(2):267-271. DOI:10.19817/j.cnki.issn1006-3536.2020.02.058.
[7]王麒,薛罡,钱雅洁,等. ZVI类Fenton-混凝同步去除印染废水中苯胺、Cr6+、锑[J]. 工业水处理,2019,39(9):87-90.
[8]LU J,WANG Z R,LIU Y L,et al. Removal of Cr ions from aqueous solution using batch electrocoagulation:Cr removal mechanism and utilization rate of in situ generated metal ions[J]. Process Safety and Environmental Protection,2016,104:436-443. DOI:10.1016/j.psep.2016.04.023.
[9]KAHRAMAN H T. Development of an adsorbent via chitosan nano-organoclay assembly to remove hexavalent chromium from wastewater[J]. International Journal of Biological Macromolecules,2017,94:202-209. DOI:10.1016/j.ijbiomac.2016.09.111.
[10]郭辰,韩彪,潘翠,等. 假单胞菌去除Cr(Ⅵ)的条件优化[J]. 广西师范大学学报(自然科学版),2021,39(3):113-121. DOI:10.16088 /j.issn.1001-6600.2020090705.
[11]RATHI B S,KUMAR P S,SHOW P L. A review on effective removal of emerging contaminants from aquatic systems:current trends and scope for further research[J]. Journal of Hazardous Materials,2021,409:124413. DOI:10.1016/j.jhazmat.2020.124413.
[12]翟付杰,张超,宋刚福,等. 木棉生物炭对水体中Cr(Ⅵ)的吸附特性和机制研究[J]. 环境科学学报,2021,41(5):1891-1900. DOI:10.13671/j.hjkxxb.2020.0558.
[13]ZHAO B W,SHI X Y,MA F F,et al. Adsorption of Cr(VI) onto biochars derived from typical vegetable oil crop biomasses originating in loess areas[J]. Fresenius Environmental Bulletin,2016,25(2):588-601.
[14]RAJAPAKSHA A U,CHEN S S,TSANG D C W,et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water:potential and implication of biochar modification[J]. Chemosphere,2016,148:276-291. DOI:10.1016/j.chemosphere.2016.01.043.
[15]SHU Y,TANG C F,HU X J,et al. H3PO4-activated cattail carbon production and application in chromium removal from aqueous solution:process optimization and removal mechanism[J]. Water,2018,10(6):754. DOI:10.3390/w10060754.
[16]FEI Y H,LI M Z,YE Z F,et al. The pH-sensitive sorption governed reduction of Cr(VI) by sludge derived biochar and the accelerating effect of organic acids[J]. Journal of Hazardous Materials,2022,423:127205. DOI:10.1016/j.jhazmat.2021.127205.
[17]陈林,平巍,闫斌,等. 不同制备温度下污泥生物炭对Cr(Ⅵ)的吸附特性[J]. 环境工程,2020,38(8):119-124. DOI:10.13205/j.hjgc.202008020.
[18]靳翠鑫,杜玉成,李杨,等. 氨基功能化硅藻土复合纳米材料的制备及其对Pb(Ⅱ)和Cr(Ⅵ)的吸附性能[J]. 中国粉体技术,2020,26(4):1-8. DOI:10.13732/j.issn.1008-5548.2020.04.001.
[19]CHOPPALA G,BOLAN N,KUNHIKRISHNAN A,et al. Differential effect of biochar upon reduction-induced mobility and bioavailability of arsenate and chromate[J]. Chemosphere,2016,144:374-381. DOI:10.1016/j.chemosphere.2015.08.043.
[20]POLIUKHOVA V,KHAN S,ZHU Q H,et al. ZnS/ZnO nanosheets obtained by thermal treatment of ZnS/ethylenediamine as a Z-scheme photocatalyst for H2 generation and Cr(VI) reduction[J]. Applied Surface Science,2022,575:151773. DOI:10.1016/j.apsusc.2021.151773.
[21]WANG R J,GUO Z W,CAI C J,et al. Practices and roles of bamboo industry development for alleviating poverty in China[J]. Clean Technologies and Environmental Policy,2021,23(6):1687-1699. DOI:10.1007/s10098-021-02074-3.
[22]辜夕容,邓雪梅,刘颖旎,等. 竹废弃物的资源化利用研究进展[J]. 农业工程学报,2016,30(1):236-242.
[23]郑龙,吴义强,左迎峰. 竹剩余物资源化利用研究现状与展望[J]. 世界林业研究,2021,34(3):82-88. DOI:10.13348/j.cnki.sjlyyj.2021.0002.y.
[24]YANG Y,LIN X,WEI B,et al. Evaluation of adsorption potential of bamboo biochar for metal-complex dye:equilibrium,kinetics and artificial neural network modeling[J]. International Journal of Environmental Science Technology,2014,11(4):1093-1100. DOI:10.1007/s13762-013-0306-0.
[25]SIMONIN J P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics[J]. Chemical Engineering Journal,2016,300:254-263. DOI:10.1016/j.cej.2016.04.079.
[26]DELLA P L,KOMREK M,BORDAS F,et al. Adsorption of copper,cadmium,lead and zinc onto a synthetic manganese oxide[J]. Journal of Colloid Interface Science,2013,399:99-106. DOI:10.1016/j.jcis.2013.02.029.
[27]SADIQ H,SHER F,SEHAR S,et al. Green synthesis of ZnO nanoparticles from Syzygium cumini leaves extract with robust photocatalysis applications[J]. Journal of Molecular Liquids,2021,335:116567. DOI:10.1016/j.molliq.2021.116567.
[28]邹意义,袁怡,沈涛,等. FeCl3改性污泥生物炭对水中吡虫啉的吸附性能研究[J]. 环境科学学报,2021,41(9):3478-3486. DOI:10.13671/j.hjkxxb.2021.0058.
[29]赵银,令狐文生. 活性炭吸附去除废水中铬(Ⅵ)的研究[J]. 河南化工,2020,37(12):14-17. DOI:10.14173/j.cnki.hnhg.2020.12.005.
[30]DIN S U,KHAN M S,HUSSAIN S,et al. Adsorptive mechanism of chromium adsorption on siltstone-nanomagnetite-biochar composite[J]. Journal of Inorganic and Organometallic Polymers and Materials,2021,31(4):1608-1620. DOI:10.1007/s10904-020-01829-7.
[31]YANG Z H,CAO J,CHEN Y P,et al. Mn-doped zirconium metal-organic framework as an effective adsorbent for removal of tetracycline and Cr(VI) from aqueous solution[J]. Microporous and Mesoporous Materials,2019,277:277-285. DOI:10.1016/j.micromeso.2018.11.014.
[32]DONG X L,MA L N Q,LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials,2011,190(1/2/3):909-915. DOI:10.1016/j.jhazmat.2011.04.008.
[33]邓华,李秋燕,周瑞爽,等. 短毛蓼粉末对Cd(Ⅱ)和Cu(Ⅱ)的吸附研究[J]. 广西师范大学学报(自然科学版),2021,39(3):102-112. DOI:10.16088/j.Issn.1001-6600.2020061103.
[34]WANG X,CUI S P,YAN B L,et al. Isothermal adsorption characteristics and kinetics of Cr ions onto ettringite[J]. Journal of Wuhan University of Technology-Materials Science Edition,2019,34(3):587-595. DOI:10.1007/s11595-019-2092-0.
[35]CHU G,ZHAO J,HUANG Y,et al. Phosphoric acid pretreatment enhances the specific surface areas of biochars by generation of micropores[J]. Environmental pollution,2018,240:1-9. DOI:10.1016/j.envpol.2018.04.003.
[36]GAN C,LIU Y G,TAN X F,et al. Effect of porous zinc-biochar nanocomposites on Cr(Ⅵ) adsorption from aqueous solution[J]. RSC Advances,2015,5(44):35107-35115. DOI:10.1039/c5ra04416b.
[37]YU J D,JIANG C Y,GUAN Q Q,et al. Enhanced removal of Cr(VI) from aqueous solution by supported ZnO nanoparticles on biochar derived from waste water hyacinth[J]. Chemosphere,2018,195:632-640. DOI:10.1016/j.chemosphere.2017.12.128.
[38]LIU H,ZHANG F,PENG Z Y. Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites[J]. Scientific Reports,2019,9(1):3363. DOI:10.1038/s41598-019-40344-9.
[39]ZHOU M,YANG X N,SUN R H,et al. The contribution of lignocellulosic constituents to Cr(VI) reduction capacity of biochar-supported zerovalent iron[J]. Chemosphere,2021,263:127871. DOI:10.1016/j.chemosphere.2020.127871.
[40]王海洋,马千里. 马尾松树皮纳米木质纤维素气凝胶吸附剂对Cr3+、Cu2+、Pb2+、Ni2+的吸附性能及机理[J]. 林业科学,2021,57(7):166-174.
[41]WANG B,LI F Y,WANG L. Enhanced hexavalent chromium(Cr(VI)) removal from aqueous solution by Fe-Mn oxide-modified cattail biochar:adsorption characteristics and mechanism[J]. Chemistry and Ecology,2020,36(2):138-154. DOI:10.1080/02757540.2019.1699537.
[42]SMAALI A,BERKANI M,MEROUANE F,et al. Photocatalytic-persulfate-oxidation for diclofenac removal from aqueous solutions:modeling,optimization and biotoxicity test assessment[J]. Chemosphere,2021,266:129158. DOI:10.1016/j.chemosphere.2020.129158.
[43]KAJBAF F,DERIKVAND E,BABARSAD M S,et al. Lotus-leaf biochar modified with metal oxide nanoparticles:synthesise,characterisation and application to the photocatalytic removal of Cr6+,Cr3+ and Co2+ ions[J/OL]. International Journal of Environmental Analytical Chemistry:1-17[2022-01-05].https:∥ doi.org/10.1080/03067319.2021.1944621. DOI:10.1080/03067319.2021.1944621.
[44]张奎,王雪梅,李玉环,等. 硫改性牛粪生物炭对Hg2+的高效吸附及机理[J]. 环境工程,2022,40(4):79-88.
[45]YU Y,AN Q,JIN L,et al. Unraveling sorption of Cr(VI) from aqueous solution by FeCl3 and ZnCl2-modified corn stalks biochar:implicit mechanism and application[J]. Bioresource Technology,2020,297:122466. DOI:10.1016/j.biortech.2019.122466.
[46]WANG X S,CHEN L F,LI F Y,et al. Removal of Cr(VI) with wheat-residue derived black carbon:reaction mechanism and adsorption performance[J]. Journal of Hazardous Materials,2010,175(1/2/3):816-822. DOI:10.1016/j.jhazmat.2009.10.082.
[47]JOAO C A M,ERIK S J G,SANTIAGO G H,et al. Organosulphur-modified biochar:an effective green adsorbent for removing metal species in aquatic systems[J]. Surfaces and Interfaces,2021,22:100822. DOI:10.1016/j.surfin.2020.100822.
[1] DENG Hua, LI Qiuyan, ZHOU Ruishuang, PANG Shuyue, LIU Jinyu, KANG Caiyan. Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 102-112.
[2] GUO Chen, HAN Biao, PAN Cui, WU Jiemin, CHEN Yinyue, ZHOU Fei, GAN Tian, SHANG Changhua. Optimization of Chromium(Ⅵ) Removal by Pseudomonas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 113-121.
[3] FENG Yu-zhi, PENG Gui-hua, LIANG Zhen-hua, LU Feng-qi, WEI Yan-yan. Co-precipitation Synthesis of CaMoO4:Eu3+0.18,B3+0.1 Red Phosphor for White LED [J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(2): 83-86.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XU Lunhui,YIN Shide,LIU Yijia. Self-Adaptive Cuckoo Algorithm Based on Simulated Annealing for Bus Scheduling Problem[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 1 -7 .
[2] XIAO Fei-peng, LI Hui, YIN Hui, WANG Yue. The Ecological Compensation of Qingshitan Reservoir Based on the Value of Ecosystem Service Function[J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 162 -167 .
[3] ZHOU Zihao, LIU Yuhan, TAN Yanhong, MENG Yuqing, WU Hongying, HUANG Jinlong, WU Zhengjun. Enzymatic Preparation of Antimicrobial Peptides from the Viscera of Pomacea canaliculata[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 154 -161 .
[4] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[5] YIN Yudong, KE Shanzhe, HUANG Jiayan, DENG Mengxiang, LIU Guanyan, CHENG Keguang. One-pot Generation of Allylated Products from Alcohols, Carboxylic Acids and Amines with 1,3-Dibromopropane by Sodium Hydride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 154 -161 .
[6] HE Nan, ZHANG Xiaoli, CHEN Ning, CHEN Zening, WU Zhengjun. Genetic Structure of the Artificial Breeding Shinisaurus crocodilurus in Luokeng Nature Reserve Based on Microsatellite DNA Marker[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 180 -187 .
[7] DENG Hua, LI Ming-shun, CHEN Ying-xu, YU Fang-ming, CHEN Chun-qiang, ZHOU Zhen-ming. Subcellular Distribution and Chemical Fractions of Manganese in Hyperaccumulator Polygonum pubescens Blume[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 58 -62 .
[8] WANG Zhi-jun, YU Xue-li. Semantic Routing Retrieval Model Based on OKQT[J]. Journal of Guangxi Normal University(Natural Science Edition), 2010, 28(1): 131 -134 .