Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (3): 102-112.doi: 10.16088/j.issn.1001-6600.2020061103

Previous Articles     Next Articles

Adsorption of Cd(Ⅱ) and Cu(Ⅱ) from Aqueous Solutions by Polygonum Pubescens Blume Powder

DENG Hua1,2, LI Qiuyan1,2, ZHOU Ruishuang1,2, PANG Shuyue1,2, LIU Jinyu1,2, KANG Caiyan1,2*   

  1. 1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Guilin Guangxi 541006, China;
    2. College of Environment and Resources, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2020-06-11 Revised:2020-08-15 Published:2021-05-13

Abstract: In this paper, the effects of pH value, dosage, initial concentration, temperature and adsorption time on the adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder were studied by batch adsorption test with polygonum pubescens blume powder (hyperaccumulating manganese plant) as the research object. The adsorption mechanism was explored through kinetics, isothermal model fitting, FT-IR, SEM-EDS and XRD characterization analysis. The results showed that the optimum pH for adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder was 8 and 7, respectively, and the optimum dosage was 250 mg, and the adsorption equilibrium time was 60 min. The adsorption of Cd(Ⅱ) and Cu(Ⅱ) were in accordance with the quasi-second-order kinetic model. The adsorption of Cu(Ⅱ) was in accordance with Langmuir model, and the maximum theoretical adsorption capacity was 90.01 mg/g. The adsorption of Cd(Ⅱ) was in accordance with Freundlich model, and the maximum theoretical adsorption capacity was 62.69 mg/g. The adsorption thermodynamic analysis shows that the values of ΔG and ΔH are all negative, indicating that the adsorption process is spontaneous exothermic process. The results showed that the adsorption of Cd(Ⅱ) and Cu(Ⅱ) by polygonum pubescens blume powder were mainly carried out by hydrogen bonding, ion exchange and cation exchange-π interactions.

Key words: polygonum pubescens blume powder, cadmium, copper, adsorption, adsorption mechanism

CLC Number: 

  • X703
[1]吴文晖, 邹辉, 朱岗辉, 等. 湘中某矿区地下水重金属污染特征及健康风险评估[J]. 生态与农村环境学报, 2018, 34(11): 1027-1033. DOI:10.11934/j.issn.1673-4831.2018.11.010.
[2]常文保. 化学词典[M]. 北京:科学出版社, 2008.
[3]DONG L H, HOU L A, WANG Z S, et al. A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism[J]. Journal of Hazardous Materials, 2018, 359: 76-84. DOI:10.1016/j.jhazmat.2018.07.030.
[4]ÇIMEN A. Removal of chromium from wastewater by reverse osmosis[J]. Russian Journal of Physical Chemistry A, 2015, 89(7): 1238-1243. DOI:10.1134/S0036024415070055.
[5]REN G P, SUN Y, LU A H, et al. Boosting electricity generation and Cr(VI) reduction based on a novel silicon solar cell coupled double-anode(photoanode/bioanode) microbial fuel cell[J]. Journal of Power Sources, 2018, 408: 46-50. DOI:10.1016/j.jpowsour.2018.10.081.
[6]LEIVA E, LEIVA-ARAVENA E, RODRÍGUEZ C, et al. Arsenic removal mediated by acidic pH neutralization and iron precipitation in microbial fuel cells[J]. Science of the Total Environment, 2018, 645: 471-481. DOI:10.1016/j.scitotenv.2018.06.378.
[7]LI X X, WANG X L, CHEN Y D, et al. Optimization of combined phytoremediation for heavy metal contaminated mine tailings by a field-scale orthogonal experiment[J]. Ecotoxicology and Environmental Safety, 2019, 168: 1-8. DOI:10.1016/j.ecoenv.2018.10.012.
[8]张彦. 玉米秸秆对重金属离子铅的吸附研究[J]. 化工中间体, 2015(12): 72-73.
[9]潘海燕, 冀兰涛, 丁清波. 落叶对重金属吸附的初步研究[J]. 仪器仪表与分析监测, 2001(4): 31-32,36.
[10]王昭, 赵思爽, 喻琴琴, 等. 文冠果外皮对水体中锌的去除研究[J]. 首都师范大学学报(自然科学版), 2013, 34(3): 26-33. DOI:10.19789/j.1004-9398.2013.03.007.
[11]谢永彬, 刘敬勇, 刘凯, 等. 甘蔗渣对水中Cr(Ⅵ)吸附性能的实验研究[J]. 水科学与工程技术, 2012(6): 39-42. DOI:10.19733/j.cnki.1672-9900.2012.06.011.
[12]和君强, 李菊梅, 马义兵, 等. 四种材料对灌溉水中镉净化性能的比较[J]. 农业环境科学学报, 2016, 35(10): 1984-1991. DOI:10.11654/jaes.2016-0363.
[13]林驰浩, 徐劼, 王嘉俊, 等. 生物质材料在重金属废水处理中的应用及其研究进展[J]. 广州化工, 2020, 48(5): 24-26,104.
[14]王重庆, 王晖, 江小燕, 等. 生物炭吸附重金属离子的研究进展[J]. 化工进展, 2019, 38(1): 692-706. DOI:10.16085/j.issn.1000-6613.2018-0993.
[15]肖芳芳, 张莹莹, 程建华, 等. 壳聚糖/磁性生物碳对重金属Cu(Ⅱ)的吸附性能[J]. 环境工程学报, 2019, 13(5): 1048-1055. DOI:10.12030/j.cjee.201810181.
[16]邓潇, 周航, 陈珊, 等. 改性玉米秸秆炭和花生壳炭对溶液中Cd2+的吸附[J]. 环境工程学报, 2016, 10(11): 6325-6331. DOI:10.12030/j.cjee.201810181.
[17]ACHARYA J, SAHU J N, MOHANTY C R, et al. Removal of lead(II) from wastewater by activated carbon developed from tamarind wood, by zinc chloride activation[J]. Chemical Engineering Journal, 2009,149(1/3): 249-262. DOI:10.1016/j.cej.2008.10.029.
[18]康彩艳, 莫蔚明, 蒋治良, 等. 漓江底泥对活性艳蓝X-BR的吸附行为研究[J]. 广西师范大学学报(自然科学版), 2004,22(4): 65-68.
[19]JIANG Y H, LI A Y, DENG H, et al. Phosphate adsorption from wastewater using ZnAl-LDO-loaded modified banana straw biochar[J]. Environmental Science and Pollution Research, 2019, 26(18): 18343-18353. DOI:10.1007/s11356-019-05183-1.
[20]LI Y, TSEND N, LI T, et al. Microwave assisted hydrothermal preparation of rice straw hydrochars for adsorption of organics and heavy metals[J]. Bioresource Technology, 2019, 273: 136-143. DOI:10.1016/j.biortech.2018.10.056.
[21]CHEN X C, CHEN G C, CHEN L G, et al. Adsorption of copper and zinc by biochars produced from pyrolys of hardwood and corn straw in aqueous solution[J]. Bioresource Technology, 2011, 102(19): 8877-8884. DOI:10.1016/j.biortech.2011.06.078.
[22]ZHANG W, SONG J Y, HE Q L, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials, 2020, 384: 121445. DOI:10.1016/j.jhazmat.2019.121445.
[23]周瑾琨, 尹志慧, 赵玮. 玉米皮纤维素提取工艺优化及结构表征[J]. 食品工业科技, 2019, 40(5): 207-212. DOI:10.13386/j.issn1002-0306.2019.05.034.
[24]LIU H K, XU F, XIE Y L, et al. Effect of modified coconut shell biochar on availability of heavy metals and biochemical characteristics of soil in multiple heavy metals contaminated soil[J]. Science of the Total Environment, 2018, 645: 702-709. DOI:10.1016/j.scitotenv.2018.07.115.
[25]胡学玉, 陈窈君, 张沙沙, 等. 磁性玉米秸秆生物炭对水体中Cd的去除作用及回收利用[J]. 农业工程学报, 2018, 34(19): 208-218. DOI:10.11975/j.issn.1002-6819.2018.19.027.
[26]JUNG K W, LEE S Y, LEE Y J. Facile one-pot hydrothermal synthesis of cubic spinel-type manganese ferrite/biochar composites for environmental remediation of heavy metals from aqueous solutions[J]. Bioresource Technology, 2018, 261: 1-9. DOI:10.1016/j.biortech.2018.04.003.
[27]REGUYAL F, SARMAH A K. Site energy distribution analysis and influence of Fe3O4 nanoparticles on sulfamethoxazole sorption in aqueous solution by magnetic pine sawdust biochar[J]. Environmental Pollution, 2018, 233: 510-519. DOI:10.1016/j.envpol.2017.09.076.
[28]AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014, 99: 19-33. DOI:10.1016/j.chemosphere.2013.10.071.
[29]SUN J K, LIAN F, LIU Z Q, et al. Biochars derived from various crop straws: characterization and Cd(II) removal potential[J]. Ecotoxicology and Environmental Safety, 2014, 106: 226-231. DOI:10.1016/j.ecoenv.2014.04.042.
[30]ZHANG F, WANG X, YIN D X. et al. Efficiency and mechanisms of Cd removal from aqueous solution by biochar derived from water hyacinth(Eichornia crassipes)[J]. Journal of Environmental Management, 2015, 153: 68-73. DOI:10.1016/j.jenvman.2015.01.043.
[31]KIM W K, SHIM T, KIM Y S, et al. Characterization of cadmium removal from aqueous solutions by biochar produced from a giant Miscanthus at different pyrolytic temperatures[J]. Bioresource Technology, 2013, 138: 266-270. DOI:10.1016/j.biortech.2013.03.186.
[32]GONG Y P, NI Z Y, XIONG Z Z, et al. Phosphate and ammonium adsorption of the modified biochar based on Phragmites australis after phytoremediation[J]. Environmental Science and Pollution Research, 2017, 24(9): 8326-8335. DOI:10.1007/s11356-017-8499-2.
[33]鲁秀国, 武今巾, 过依婷. 生物炭修复重金属污染土壤的研究进展[J]. 应用化工, 2019, 48(5): 1172-1177. DOI:10.16581/j.cnki.issn1671-3206.20190311.028.
[1] WANG Nana, ZHANG Xiang. Adsorption Properties of PAN-based Weakly Basic Ion Exchange Fiber for Zn2+ [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 86-94.
[2] LIN Haijiao, ZHANG Jifu, ZHANG Yun, HU Yunfeng. Immobilization of Lipase by Crosslinking and Then AdsorptionMethod Using Macroporous Adsorbent Resin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 100-108.
[3] FENG Xiu, MA Nannan, ZHI Hongtao, HAN Shuangqiao, ZHANG Xiang. Removal of Low Concentration Cadmium Ion in the Wastewater by Heavy Metal Capturing Agent UDTC [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 63-67.
[4] WU Juan,ZOU Hua,MEI Ping. Surface Properties of Carboxylate Gemini Surfactant [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 78-86.
[5] QIN Fang, JIANG Qin-feng, WANG Ting, WANG Yu-rong, FENG Ji-qing, CHEN Jin-yi. Removal Capacity of Microcystis aeruginosaby Mg/Al Hydrotalcite and Zn/Al Hydrotalcite [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(1): 115-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XIAO Fayuan,LI Haowei. A Routing Optimization Algorithm for Wireless Sensor Network Based on Fuzzy Theory[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 37 -43 .
[2] BAI Shimin,ZHANG Jianle,WANG Renxiang. Gametophyte Development in Plagiogyria euphlebia[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(1): 98 -103 .
[3] LIAO Chungui, CHEN Yuelian, XIONG Xiaoju, HU Baoqing. Changes of Vegetation NDVI and Its Driving Factors from 2007 to 2016 in Guangxi,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 118 -127 .
[4] XU Qin, MA Chaomei, RAO Weiwen, DENG Lidong. Quantification of Twelve Constituents in the Extracts of Folium ficim icrocarpaeby Ultra-performence Liquid Chromatography-Quadropole Mass Spectrometry[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 80 -86 .
[5] ZHANG Qingqing,WANG Yanyan,MENG Pinjia, ZHANG Wenfang. Determination of Quaternary Ammonium Herbicides in Pond Water by SPEwith Sweeping-MEKC Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 93 -100 .
[6] FAN Caiwen, TANG Juan, LUO Qin, LI Lu, XIANG Qiu. Reduced Light Intensity of Western Blot by Diluted Ultra-enhancedChemiluminescent Solution[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 108 -111 .
[7] YU Qingfen. Preparation and Properties of Ionic Liquids Containing HexahydrateMagnesium Chloride[J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 97 -103 .
[8] CHENG Yuanyao, SONG Shuxiang, JIANG Pinqun. Design of 2.4 GHz CMOS Low-noise Amplifier[J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(3): 7 -13 .
[9] HE Peng, LIU Gao-kai, LI Jing-hui. Fatigue Driving Monitoring and Early Warning System Based on Machine Vision[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 25 -29 .
[10] SU Yi-juan, SUN Ke, DENG Zhen-yun, YIN Ke-jun. KNN Imputation Algorithm Based on LPP and l2,1[J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 55 -62 .