Journal of Guangxi Normal University(Natural Science Edition) ›› 2015, Vol. 33 ›› Issue (4): 25-29.doi: 10.16088/j.issn.1001-6600.2015.04.005

Previous Articles     Next Articles

Fatigue Driving Monitoring and Early Warning System Based on Machine Vision

HE Peng, LIU Gao-kai, LI Jing-hui   

  1. College of Communications and Electronics Engineering,Qiqihar University,Qiqihar Heilongjiang 161006,China
  • Received:2015-04-30 Online:2015-12-25 Published:2018-09-21

Abstract: In view of the lack of current intelligent fatigue driving monitoring products, a design scheme based on machine vision theory is proposed. When fitting the eye contour, due to the high complexity of the algorithm of ellipse based on random voting mechanism, a modified method is proposed to reduce the time complexity of the algorithm, by narrowing the range of fitting points. When one judges the fatigue state, the PERCLOS method can not take into account the accuracy and real-time problem. By modifying the parameters appropriately, the method of continuous frame analysis is presented, so that the driver’s state can be distinguished, and the real-time performance is guaranteed. Experimental results show that the algorithm improves the accuracy and real-time performance of the system compared with the previous algorithm.

Key words: rotating target method, voting mechanism, normalization, continuous frame analysis

CLC Number: 

  • U491.6
[1] FITZGIBBON A, PILU M, FISHER R B. Direct least square fitting of ellipses[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1999, 21(5):476-480.
[2] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008,34(3):295-298.
[3] 黄慧琼, 覃运梅. 考虑驾驶员性格特性的超车模型研究[J]. 广西师范大学学报:自然科学版, 2015,33(1):20-26.
[4] JI Q, ZHU Z, LAN P. Real-time nonintrusive monitoring and predition of driver fatigue[J]. IEEE Transactions on Vehicular Technology, 2004,53(4):1052-1068.
[5] BERGASA L M, NUEVO J, SOTELO M A, et al. Real-time system for monitoring driver vigilance[J]. IEEE Transactions on Intelligent Transportation Systems, 2006,7(1):63-77.
[6] 葛如海, 陈彦博, 刘志强. 基于计算机视觉的驾驶员疲劳识别方法的研究[J]. 中国安全科学学报, 2006,16(9):134-138.
[7] 周锋华, 孟宪元, 梅顺良, 等. 司机疲劳驾驶实时检测系统设计[J]. 测控技术, 2013,32(1):38-40.
[8] 潘晓东, 李君羡. 基于眼部行为的驾驶疲劳监测方法[J]. 同济大学学报:自然科学版, 2011,39(2):231-235.
[9] 郑培, 宋正河, 周一鸣. 机动车驾驶员驾驶疲劳测评方法的研究状况及发展趋势[J]. 中国农业大学学报, 2001,6(6):101-105.
[10] 程如中, 赵勇,戴勇,等. 基于 Adaboost 方法的车载嵌入式疲劳驾驶预警系统[J]. 北京大学学报:自然科学版, 2012,48(5):719-723.
[11] BRADSKI G R. Computer vision face tracking for use in a perceptual user interface[C]//IEEE Workshop on Applications of Computer Vision. Princeton, NJ: IEEE Press, 1998: 214-219.
[12] KNIPLING R R, WIERWILLE W W. Vehicle-based drowsy driver detection: current status and future prospects[R]. USA: Atlanta. Georgia, 1994.
[13] 卡斯尔曼. 数字图像处理[M]. 朱志刚,林学訚,石定机,等译. 北京:电子工业出版社, 2002:412-413.
[1] CHENG Hong-mei, ZHANG Zhen-ya, ZHANG Shu-guang. Identification of Temperature Field in Intelligent Building Based on BP Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 219-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!