Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (5): 61-68.doi: 10.16088/j.issn.1001-6600.2022111903
Previous Articles Next Articles
LI Yiyang1, ZENG Caibin1, HUANG Zaitang2*
[1] BUNGAY H R. Microbialinteractions in continuous culture[J].Advances in Applied Microbiology, 1968, 10: 269-290. DOI: 10.1016/S0065-2164(08)70194-1. [2] TAYLOR P A, WILLIAMS P J. Theoretical studies on the coexistence of competing species under continuous-flow conditions[J]. Canadian Journal of Microbiology, 1975, 21(1): 90-98. DOI: 10.1139/m75-013. [3] FREDRICKSON A, STEPHANOPOULOS G. Microbial competition[J]. Science, 1981, 213(4511): 972-979. DOI: 10.1126/science.7268409. [4] JANNASH H W, MATELES R I. Experimental bacterial ecology studied in continuous culture[J]. Advances in Microbial Physiology, 1974, 11: 165-212. DOI:10.1016/S0065-2911(08)60272-6. [5] D’ANS G, KOKOTOVIC P, GOTTLIEB D. A nonlinear regulator problem for a model of biological waste treatment[J]. IEEE Transactions on Automatic Control, 1971, 16(4): 341-347. DOI: 10.1109/TAC.1971.1099745. [6] LA RIVIERE J. Microbial ecology of liquid waste treatment[M]//ALEXANDER M . Advances in Microbial Ecology. Boston: Springer, 1977: 215-259. DOI: 10.1007/978-1-4615-8219-9_5. [7] FRETER R. Chapter 2-Mechanisms that control the microflora in the large intestine[M]// HENTGES D J. Human Intestinal Microflora in Health and Disease. New York: Academic Press, 1983: 33-54. DOI: 10.1016/B978-0-12-341280-5.50008-2. [8] CARABALLO T, HAN X. Applied nonautonomous and random dynamical systems:applied dynamical systems[M]. Cham: Springer, 2016.DOI: 10.1007/978-3-319-49247-6. [9] WALTMAN P. Coexistence in chemostat-like models[J]. The Rocky Mountain Journal of Mathematics, 1990, 20(4): 777-807. DOI: 10.1216/RMJM/1181073042. [10] BESTER E, EDWARDS E A, WOLFAARDT G M. Planktonic cell yield is linked to biofilm development[J]. Canadian Journal of Microbiology, 2009, 55(10): 1195-1206. DOI: 10.1139/w09-075. [11] WANNER O, GUJER W. A multispecies biofilm model[J]. Biotechnology and Bioengineering, 1986, 28(3): 314-328, DOI: 10.1002/bit.260280304. [12] DUDDU R, CHOPP D L, MORAN B. A two-dimensional continuum model of biofilm growth incorporating fluid flow and shear stress based detachment[J]. Biotechnology and Bioengineering, 2009, 103(1): 92-104. DOI: 10.1002/bit.22233. [13] MAIĆ A, EBERL H J. A chemostat model with wall attachment: the effect of biofilm detachment rates on predicted reactor performance[C]// Mathematical and Computational Approaches in Advancing Modern Science and Engineering. Cham: Springer, 2016: 267-276. DOI: 10.1007/978-3-319-30379-6_25. [14] FUDENBERG D, HARRIS C. Evolutionary dynamics with aggregate shocks[J]. Journal of Economic Theory, 1992, 57(2): 420-441. DOI: 10.1016/0022-0531(92)90044-I. [15] WALLACE C, YOUNG H P. Stochastic evolutionary game dynamics[J]. Handbook of Game Theory with Economic Applications, 2015, 4: 327-380. DOI: 10.1016/b978-0-444-53766-9.00006-9. [16] 刘丽雅, 蒋达清. 具有一般反应函数与贴壁生长现象的随机恒化器模型的全局动力学行为[J]. 数学物理学报, 2021, 41(6): 1912-1924. DOI: 10.3969/j.issn.1003-3998.2021.06.027. [17] 谭杨, 郭子君. 一类具有Hassell-Varley效应的随机恒化器模型的渐近性分析[J]. 应用泛函分析学报, 2019, 21(1): 93-100. DOI: 10.12012/1009-1327(2019)01-0093-08. [18] 孙明娟, 张鑫, 张佳凡,等. 一类具有单调功能反应函数的随机恒化器模型的渐近行为分析[J]. 贵州大学学报(自然科学版), 2017, 34(3): 1-5,14.DOI: 10.15958/j.cnki.gdxbzrb.2017.03.01. [19] GAO H, GARRIDO-ATIENZA M J, SCHMALFUSS B. Random attractors for stochastic evolution equations driven by fractional Brownian motion[J]. SIAM Journal on Mathematical Analysis, 2014, 46(4): 2281-2309. DOI: 10.1137/130930662. [20] 张杰, 李晓军. 无界域上非自治随机反应扩散方程一致随机吸引子的存在性[J]. 广西师范大学学报(自然科学版), 2020, 38(2): 134-143. DOI: 10.16088/j.issn.1001-6600.2020.02.016. [21] 张一进. Xρ 空间上随机时滞格系统的随机动力学[J]. 广西师范大学学报(自然科学版), 2019, 37(3): 106-110. DOI: 10.16088/j.issn.1001-6600-2019.03.012. [22] DE LA CRUZ J L. Sistemas dinámicos en modelos estocásticos con ruido fraccionario[D]. Sevilla: Universidad de Sevilla, 2018. [23] MAIĆ A, EBERL H J. Persistence in a single species CSTR model with suspended flocs and wall attached biofilms[J]. Bulletin of Mathematical Biology, 2012, 74(4): 1001-1026. DOI: 10.1007/s11538-011-9707-8. [24] COEURJOLLY J F. Statistical inference for the fractional and multifractional Brownian motions[D]. Grenoble: University Joseph Fourier, 2000. |
[1] | ZHONG Ying, WEI Yuming. A Predator-Prey Model with Mixed Functional Responses and Markov Switching in a Contaminated Environment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(4): 135-148. |
[2] | ZHAO Ming, LUO Qiulian, CHEN Weimeng, CHEN Jiani. Influence of Control Timing and Strength on the Spreading of Epidemic [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 86-97. |
[3] | SONG Bing, ZHANG Yuru, SANG Yuan, ZHANG Long. Stability of an HIV Immune Model with Saturation Incidence and Distributed Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(2): 106-117. |
[4] | LIU Jukun, HUANG Wentao, LIU Hongpu. New Lower Bounds of Limit Cycles for a Class of Three-dimensional Cubic Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(6): 109-115. |
[5] | HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126. |
[6] | SHAO Huiting, YANG Qigui. Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 433-444. |
[7] | YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131. |
[8] | ZUO Jiabin, YUN Yongzhen. Anti-periodic Boundary Value Problem for a Class of Fractional Differential Equations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 56-64. |
[9] | WANG Yue, YE Hongyan, LEI Jun, SUO Hongmin. Infinitely Many Classical Solutions for Kirchhoff Type Problem with Linear Term [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 65-73. |
[10] | HUANG Chunxian, ZHOU Xiaoliang. Bifurcation Analysis of an SIRS Epidemic Model with Graded Cure and Incomplete Recovery Rates [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 74-81. |
[11] | ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70. |
[12] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[13] | ZHANG Yijin. Random Dynamics for Stochastic Delay Lattice Systems in Xρ Space [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 106-110. |
[14] | MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25-31. |
[15] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
|