Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 135-148.doi: 10.16088/j.issn.1001-6600.2022092301
Previous Articles Next Articles
ZHONG Ying, WEI Yuming*
[1] 林永生, 裴建国.广西马山地下河系统地下水质量及污染特征分析[J].广西师范大学学报(自然科学版), 2015, 33(2): 127-133. DOI: 10.16088/j.issn.1001-6600.2015.02.020. [2] de LUNA J T, HALLAM T G. Effects of toxicants on populations: a qualitative approach IV. Resource-consumer-toxicant models[J]. Ecological Modelling, 1987, 35(3/4): 249-273. [3] HALLAM T G, CLARK C E, JORDAN G S. Effects of toxicants on populations: a qualitative approach II. First order kinetics[J]. Journal of Mathematical Biology, 1983, 18(1): 25-37. [4] 赵亮, 陈凤德.环境污染下的具有非线性捕获的捕食-食饵系统的稳定性和最优税收[J]. 西南师范大学学报(自然科学版), 2020, 45(9): 31-36. DOI: 10.13718/j.cnki.xsxb.2020.09.006. [5] 郑涛, 周欣然, 张龙. 三种群捕食-竞争-合作混杂模型的全局渐近稳定性[J].广西师范大学学报(自然科学版), 2020, 38(5): 64-70. DOI: 10.16088/j.issn.1001-6600.2020.05.008. [6] GAO Y X, TIAN S Q. Dynamics of a stochastic predator-prey model with two competitive preys and one predator in a polluted environment[J]. Japan Journal of Industrial and Applied Mathematics, 2018, 35(2): 861-889. [7] LI D G, LIU M. Invariant measure of a stochastic food-limited population model with regime switching[J]. Mathematics and Computers in Simulation, 2020, 178: 16-26. DOI: 10.1016/j.matcom.2020.06.003. [8] BAO J H, SHAO J H. Permanence and extinction of regime-switching predator-prey models[J]. SIAM Journal on Mathematical Analysis, 2016, 48(1): 725-739. DOI: 10.1137/15M1024512. [9] 程铭, 谢红梅.污染环境中具有Markov切换的随机三种群竞争系统生存分析[J]. 生物数学学报, 2017, 32(4):492-504. [10] 董春卫, 印凡成.具有Markov切换的随机Logistic系统持久性与灭绝性研究[J].黑龙江大学自然科学学报, 2015, 32(5): 571-579. DOI: 10.13482/j.issn1001-7011.2015.05.223. [11] 黄开娇, 肖飞雁. 具有Beddington-DeAngelis型功能性反应的随机捕食-被捕食系统[J].广西师范大学学报(自然科学版), 2018, 36(3): 32-40. DOI: 10.16088/j.issn.1001-6600.2018.03.005. [12] HOLLING C S. The functional response of predators to prey density and its role in mimicry and population regulation[J]. The Memoirs of the Entomological Society of Canada, 1965, 97(S45): 5-60. DOI: 10.4039/entm9745fv. [13] 赵翌含. 具有HollingⅡ型功能反应的随机捕食-食饵系统的动力学分析[D]. 重庆:重庆师范大学, 2020. DOI: 10.27672/d.cnki.gcsfc.2020.000435. [14] SOKOL W, HOWELL J A. Kinetics of phenol oxidation by washed cells[J]. Biotechnology and Bioengineering, 1981, 23(9): 2039-2049. DOI: 10.1002/bit.260230909. [15] MISHRA P, RAW S N. Dynamical complexities in a predator-prey system involving teams of two prey and one predator[J]. Journal of Applied Mathematics and Computing, 2019, 61(1): 1-24. DOI: 10.1007/s12190-018-01236-9. [16] LIU M, WANG K. Survival analysis of stochastic single-species population models in polluted environments[J]. Ecological Modelling, 2009, 220(9/10): 1347-1357. DOI: 10.1016/j.ecolmodel.2009.03.001. [17] LIU M, WANG K. Dynamics of a two-prey one-predator system in random environments[J]. Journal of Nonlinear Science, 2013, 23(5): 751-775. DOI: 10.1007/s00332-013-9167-4. [18] SETTATI A, LAHROUZ A. Stationary distribution of stochastic population systems under regime switching[J]. Applied Mathematics and Computation, 2014, 244: 235-243. DOI: 10.1016/j.amc.2014.07.012. |
[1] | YAN Sha. Global Existence of Solutions for a Three Species Predator-prey Model with Cross-diffusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 125-131. |
[2] | JIAO Mengqian, PENG Ruyue, HUANG Wentao, JIANG Guirong. Random Response of Rolling Motion of Delta Wing Aircraft under External and Parametric Excitations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 34-41. |
[3] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 32-40. |
[4] | LUO Yantao, ZHANG Long, TENG Zhidong. Permanence of an Almost Periodic Predator-prey System withIntermit-tent Dispersal and Dispersal Delays between Patches [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 50-57. |
[5] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
|