Journal of Guangxi Normal University(Natural Science Edition) ›› 2023, Vol. 41 ›› Issue (4): 149-157.doi: 10.16088/j.issn.1001-6600.2022090401
Previous Articles Next Articles
YU Junsheng, MA Zhongjun*, LI Kezan
[1] OLFATI-SABER R, MURRAY R M. Consensus problems in networks of agents with switching topology and time-delays[J]. IEEE Transactions on Automatic Control, 2004, 49(9): 1520-1533. [2] WANG Y, MA Z J, CHEN G R. Avoidingcongestion in cluster consensus of the second-order nonlinear multiagent systems[J]. IEEE Transactions on Neural Networks and Learning Systems, 2017, 29(8): 3490-3498. [3] REN W, BEARD R W, ATKINS E M. Information consensus in multivehicle cooperative control[J]. IEEE Control Systems Magazine, 2007, 27(2):71-82. [4] 陈天平, 卢文联. 复杂网络协调性理论[M]. 北京: 高等教育出版社, 2013: 2-10. [5] FAN Y, FENG G, WANG Y, et al. Distributed event-triggered control of multi-agent systems with combinational measurements[J]. Automatica, 2013, 49(2): 671-675. [6] 谢媛艳, 王毅, 马忠军. 领导-跟随多智能体系统的滞后一致性[J]. 物理学报, 2014, 63(4): 040202. [7] BRAGAGNOLO M C, MORARESCU I C, DAAFOUZ J, et al. Reset strategy for consensus in networks of clusters[J]. Automatica, 2016, 65: 53-63. [8] 吴彬彬, 马忠军, 王毅. 领导-跟随多智能体系统的部分分量一致性[J]. 物理学报, 2017, 66(6): 060201. [9] HU W J, ZHANG W, MA Z J, et al. Partial component consensus analysis of second-order and third-order nonlinear multi-agent systems[J]. Physica A: Statistical Mechanics and Its Applications, 2022, 593: 126857. [10] LI F B, MA Z J, DUAN Q C. Clustering component synchronization in a class of unconnected networks via pinning control[J]. Physica A: Statistical Mechanics and Its Applications, 2019, 525: 394-401. [11] 呼文军,马忠军,马梅.领导-跟随多智能体系统在分布式自适应控制下的滞后一致性[J].广西师范大学学报(自然科学版), 2018, 36(1):70-75. [12] DIMAROGONAS D V, FRAZZOLI E, JOHANSSON K H. Distributedevent-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2012, 57(5): 1291-1297. [13] YI X L, LIU K, DIMAROGONAS D V, et al. Dynamicevent-triggered and self-triggered control for multi-agent systems[J]. IEEE Transactions on Automatic Control, 2019, 64(8):3300-3307. [14] LIU D, YANG G H . Adynamic event-triggered control approach to leader-following consensus for linear multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(10): 6271-6279. [15] DU S L, LIU T, HO D W C. Dynamicevent-triggered control for leader-following consensus of multiagent systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(9): 3243-3251. [16] XU W Y, HO D W C, ZHONG J, et al. Event/self-triggered control for leader-following consensus over unreliable network with DoS attacks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 3137-3149. [17] RUAN X L, FENG J W, XU C, et al. Observer-based dynamic event-triggered strategies for leader-following consensus of multi-agent systems with disturbances[J]. IEEE Transactions on Network Science and Engineering, 2020, 7(4): 3148-3158. [18] 杨思凡, 谢广明, 罗文广, 等. 符号图下多智能体系统事件驱动二分一致性[J]. 信息与控制, 2020, 49(5): 591-597. [19] 廖晓昕. 稳定性的数学理论及应用[M]. 武汉: 华中师范大学出版社, 2001: 19-20, 321-322, 336-337. [20] 刘远山, 杨洪勇, 刘凡, 等. 事件触发下多智能体系统一致性的干扰主动控制[J]. 控制理论与应用, 2020, 37(5): 969-977. [21] QIN J H, FU W M, ZHENG W X, et al. On thebipartite consensus for generic linear multiagent systems with Input saturation[J]. IEEE Transactions on Cybernetics, 2017, 47(8): 1948-1958. |
[1] | ZHONG Xiaoyun. Mittag-Leffler Projective Synchronization of Fractional Order Newton-Leipnik Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2023, 41(1): 113-121. |
[2] | HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1-8. |
[3] | HU Wenjun. Delay Consensus of Leader-following Multi-agent Systems via the Adaptive Distributed Control [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 70-75. |
[4] | LI Fu-tao, MA Jing, ZOU Yan-li, MO Yu-fang. Comparing Synchronizability of Several Kuramoto Oscillator Networks with Different Topologies [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(4): 16-20. |
[5] | CHEN Wu-hua, DU Rui, FU Wei. An Algebraic Criterion of Impulsive Controllability for a Class of Time-varying Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 35-39. |
|