Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 1-21.doi: 10.16088/j.issn.1001-6600.2021071102
ZHANG Xilong, HAN Meng*, CHEN Zhiqiang, WU Hongxin, LI Muhang
CLC Number:
[1] 丁剑, 韩萌, 李娟. 概念漂移数据流挖掘算法综述[J]. 计算机科学, 2016, 43(12): 24-29, 62. DOI: 10.11896/j.issn.1002-137X.2016.12.004. [2]BRZEZINSKI D, STEFANOWSKI J. Combining block-based and online methods in learning ensembles from concept drifting data streams[J]. Information Sciences, 2014, 265: 50-67. DOI: 10.1016/j.ins.2013.12.011. [3]BIFET A, HOLMES G, PFAHRINGER B. Leveraging Bagging for evolving data streams[C]// Machine Learning and Knowledge Discovery in Databases. Berlin: Springer, 2010: 135-150. DOI: 10.1007/978-3-642-15880-3_15. [4]STREET W N, KIM Y S. A streaming ensemble algorithm (SEA) for large-scale classification[C]// Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY: Association for Computing Machinery, 2001: 377-382. DOI: 10.1145/502512.502568. [5]WANG H X, FAN W, YU P S, et al. Mining concept-drifting data streams using ensemble classifiers[C]// Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: Association for Computing Machinery, 2003: 226-235. DOI: 10.1145/956750.956778. [6]REN S Q, ZHU W, LIAO B, et al. Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning[J]. Knowledge-Based Systems, 2019, 163: 705-722. DOI: 10.1016/j.knosys.2018.09.032. [7]ZHANG H, LIU W K, WANG S, et al. Resample-based ensemble framework for drifting imbalanced data streams[J]. IEEE Access, 2019, 7: 65103-65115. DOI: 10.1109/ACCESS.2019.2914725. [8]READ J, PFAHRINGER B, HOLMES G, et al. Classifier chains for multi-label classification[J]. Machine Learning, 2011, 85(3): 333-359. DOI: 10.1007/s10994-011-5256-5. [9]BABENKO B, YANG M H, BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8): 1619-1632. DOI: 10.1109/TPAMI.2010.226. [10]LEMAIRE V, SALPERWYCK C, BONDU A. A survey on supervised classification on data streams[C]// Business Intelligence: LNBIP Volume 205. Cham: Springer, 2015: 88-125. DOI: 10.1007/978-3-319-17551-5_4. [11]GOMES H M, BARDDAL J P, ENEMBRECK F, et al. A survey on ensemble learning for data stream classification[J]. ACM Computing Surveys, 2018, 50(2): 23. DOI: 10.1145/3054925. [12]IWASHITA A S, PAPA J P. An overview on concept drifts learning[J]. IEEE Access, 2019, 7: 1532-1547. DOI: 10.1109/ACCESS.2018.2886026. [13]陈丽芳, 代琪, 赵佳亮. 不平衡数据多粒度集成分类算法研究[J]. 计算机工程与科学, 2021, 43(5): 917-925. DOI: 10.3969/j.issn.1007-130X.2021.05.019. [14]贾涛, 韩萌, 王少峰, 等. 数据流决策树分类方法综述[J]. 南京师大学报(自然科学版), 2019, 42(4): 49-60. DOI: 10.3969/j.issn.1001-4616.2019.04.008. [15]POLIKAR R, UPDA L, UPDA S S, et al. Learn++: an incremental learning algorithm for supervised neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 2001, 31(4): 497-508. DOI: 10.1109/5326.983933. [16]ZHAO Q L, JIANG Y H, XU M. Incremental Learning by Heterogeneous Bagging Ensemble[C]// Advanced Data Mining and Applications: LNAI Volume 6441. Berlin: Springer, 2010: 1-12. DOI: 10.1007/978-3-642-17313-4_1. [17]OZA N C. Online bagging and boosting[C]// 2005 IEEE International Conference on Systems, Man and Cybernetics. Piscataway, NJ: IEEE, 2005: 2340-2345. DOI: 10.1109/ICSMC.2005.1571498. [18]杜诗语, 韩萌, 申明尧, 等. 概念漂移数据流集成分类算法综述[J]. 计算机工程, 2020, 46(1): 15-24, 30. DOI: 10.19678/j.issn.1000-3428.0055747. [19]DECKERT M. Batch weighted ensemble for mining data streams with concept drift[C]// Foundations of Intelligent Systems: LNAI Volume 6804. Berlin: Springer, 2011: 290-299. DOI: 10.1007/978-3-642-21916-0_32. [20]BRZEZINSKI D, STEFANOWSKI J. Reacting to different types of concept drift: the accuracy updated ensemble algorithm[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 81-94. DOI: 10.1109/TNNLS. 2013.2251352. [21]BERTINI JUNIOR J R, NICOLETTI M D C. An iterative boosting-based ensemble for streaming data classification[J]. Information Fusion, 2019, 45: 66-78. DOI: 10.1016/j.inffus.2018.01.003. [22]潘吴斌, 程光, 郭晓军, 等. 基于信息熵的自适应网络流概念漂移分类方法[J]. 计算机学报, 2017, 40(7): 1556-1571. DOI: 10.11897/SP.J.1016.2017.01556. [23]ABDUALRHMAN M A A, PADMA M C. Deterministic concept drift detection in ensemble classifier based data stream classification process[J]. International Journal of Grid and High Performance Computing, 2019, 11(1): 29-48. DOI: 10.4018/IJGHPC.2019010103. [24]文益民, 强保华, 范志刚. 概念漂移数据流分类研究综述[J]. 智能系统学报, 2013, 8(2): 95-104. DOI: 10.3969/j.issn.1673-4785.201208012. [25]ANCY S, PAULRAJ D. Online learning model for handling different concept drifts using diverse ensemble classifiers on evolving data streams[J]. Cybernetics and Systems, 2019, 50(7): 579-608. DOI: 10.1080/01969722.2019.1645996. [26]FEITOSA NETO A, CANUTO A M P. EOCD: an ensemble optimization approach for concept drift applications[J]. Information Sciences, 2021, 561: 81-100. DOI: 10.1016/j.ins.2021.01.051. [27]LIU A J, LU J, ZHANG G Q. Diverse instance-weighting ensemble based on region drift disagreement for concept drift adaptation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(1): 293-307. DOI: 10.1109/TNNLS.2020.2978523. [28]SIDHU P, BHATIA M P S. An online ensembles approach for handling concept drift in data streams: diversified online ensembles detection[J]. International Journal of Machine Learning and Cybernetics, 2015, 6(6): 883-909. DOI: 10.1007/s13042-015-0366-1. [29]SIDHU P, BHATIA M P S. A novel online ensemble approach to handle concept drifting data streams: diversified dynamic weighted majority[J]. International Journal of Machine Learning and Cybernetics, 2018, 9(1): 37-61. DOI: 10.1007/s13042-015-0333-x. [30]李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673-688. DOI: 10.13195/j.kzyjc.2018.0865. [31]WANG S, MINKU L L, YAO X. Resampling-based ensemble methods for online class imbalance learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(5): 1356-1368. DOI: 10.1109/TKDE.2014.2345380. [32]肖梁, 韩璐, 魏鹏飞, 等. 基于Bagging集成学习的多集类不平衡学习[J]. 计算机技术与发展, 2021, 31(10): 1-6. DOI: 10.3969/j.issn.1673-629x.2021.10.001. [33]ZYBLEWSKI P, SABOURIN R, WOZNIAK M. Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams[J]. Information Fusion, 2021, 66: 138-154. DOI: 10.1016/j.inffus.2020.09.004. [34]段化娟, 尉永清, 刘培玉, 等. 一种面向不平衡分类的改进多决策树算法[J]. 广西师范大学学报(自然科学版),2020, 38(2): 72-80. DOI: 10.16088/j.issn.1001-6600.2020.02.008. [35]ANCY S, PAULRAI D. Handling imbalanced data with concept drift by applying dynamic sampling and ensemble classification model[J]. Computer Communications, 2020, 153: 553-560. DOI: 10.1016/j.comcom.2020.01.061. [36]SUN Y M, KAMEL M S, WONG A K C, et al. Cost-sensitive boosting for classification of imbalanced data[J]. Pattern Recognition, 2007, 40(12): 3358-3378. DOI: 10.1016/j.patcog.2007.04.009. [37]TAO X M, LI Q, GUO W J, et al. Self-adaptive cost weights-based support vector machine cost-sensitive ensemble for imbalanced data classification[J]. Information Sciences, 2019, 487: 31-56. DOI: 10.1016.j.ins.2019.02.062. [38]WONG M L, SENG K, WONG P K. Cost-sensitive ensemble of stacked denoising autoencoders for class imbalance problems in business domain[J]. Expert Systems with Applications, 2020, 141: 112918. DOI: 10.1016/j.eswa.2019.112918. [39]LOEZER L, ENEMBRECK F, BARDDAL J P, et al. Cost-sensitive learning for imbalanced data streams[C]// Proceedings of the 35th Annual ACM Symposium on Applied Computing. New York, NY: Association for Computing Machinery, 2020: 498-504. DOI: 10.1145/3341105.3373949. [40]孟威, 周忠眉. 基于标签组合的多标签特征选择算法[J]. 模糊系统与数学, 2021, 35(1): 144-154. [41]TSOUMAKAS G, KATAKIS I, VLAHAVAS I. Effective and efficient multilabel classification in domains with large number of labels[C]// Proceedings of the ECML/PKDD 2008 Workshop on Mining Multidimensional Data. Antwerp, Belgium: ECML PKDD, 2008: 30-44. [42]ZHANG L, SHAH S K, KAKADIARIS I A. Hierarchical multi-label classification using fully associative ensemble learning[J]. Pattern Recognition, 2017, 70: 89-103. DOI: 10.1016/j.patcog.2017.05.007. [43]TSOUMAKAS G, DIMOU A, SPYROMITROS E, et al. Correlation-based pruning of stacked binary relevance models for multi-label learning[C]// Proceedings of the ECML/PKDD 2009 Workshop on Learning from Multi-Label Data (MLD′09). Bled, Slovenia: ECML PKDD, 2009: 101-116. [44]NGUYEN T T T, NGUYEN T T, LIEW A W C, et al. An online variational inference and ensemble based multi-label classifier for data streams[C]// 2019 Eleventh International Conference on Advanced Computational Intelligence (ICACI). Piscataway, NJ: IEEE, 2019: 302-307. DOI: 10.1109/ICACI.2019.8778594. [45]WANG L Q, ZHAO Z C, SU F. Efficient multi-modal hypergraph learning for social image classification with complex label correlations[J]. Neurocomputing, 2016, 171: 242-251. DOI: 10.1016/j.neucom.2015.06.064. [46]WANG L L, SHEN H, TIAN H. Weighted ensemble classification of multi-label data streams[C]// Advances in Knowledge Discovery and Data Mining: LNAI Volume 10235. Cham: Springer, 2017: 551-562. DOI: 10.1007/978-3-319-57529-2_43. [47]XIA Y L, CHEN K, YANG Y. Multi-label classification with weighted classifier selection and stacked ensemble[J]. Information Sciences, 2021, 557: 421-442. DOI: 10.1016/j.ins.2020.06.017. [48]SZYMANSKI P, KAJDANOWICZ T, CHAWLA N V. LNEMLC: label network embeddings for multi-labelclassification[EB/OL]. (2019-01-01)[2021-07-11]. http://arxiv.org/abs/1812.02956. DOI: 10.48550/arXiv.1812.02956. [49]SUN Y G, SHAO H, WANG S S. Efficient ensemble classification for multi-label data streams with concept drift[J]. Information, 2019, 10(5): 158. DOI: 10.3390/info10050158. [50]WANG R, KWONG S, WANG X, et al. Activek-labelsets ensemble for multi-label classification[J]. Pattern Recognition, 2021, 109: 107583. DOI: 10.1016/j.patcog.2020.107583. [51]徐庸辉. 面向多实例分类的迁移学习研究[D]. 广州: 华南理工大学, 2017. [52]SASTRAWAHA S, HORATA P. Ensemble extreme learning machine for multi-instance learning[C]// Proceedings of the 9th International Conference on Machine Learning and Computing. New York, NY: Association for Computing Machinery, 2017: 56-60. DOI: 10.1145/3055635.3056641. [53]KOCYIGIT G, YASLAN Y. DEMIAL: an active learning framework for multiple instance image classification using dictionary ensembles[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2018, 26: 593-604. DOI: 10.3906/elk-1703-319. [54]TAER P Y, BIRANT K U, BIRANT D. Comparison of ensemble-based multipleinstance learning approaches[C]// 2019 IEEE International Symposium on Innovations in Intelligent Systems and Applications (INISTA). Piscataway, NJ: IEEE, 2019: paper 31. DOI: 10.1109/INISTA.2019.8778273. [55]TU M, HUANG J, HE X D, et al. Multiple instance learning with graph neuralnetworks[EB/OL]. (2019-06-12)[2021-07-11]. http://arxiv.org/abs/1906.04881. DOI: 10.48550/arXiv.1906.04881. [56]WANG Z H, YOON S, XIE S J, et al. Visual tracking with semi-supervised online weighted multiple instance learning[J]. The Visual Computer, 2016, 32(3): 307-320. DOI: 10.1007/s00371-015-1067-1. [57]CANO A. An ensemble approach to multi-view multi-instance learning[J]. Knowledge Based System, 2017, 136: 46-57. DOI: 10.1016/j.knosys.2017.08.022. [58]BJERRING L, FRANK E. Beyond trees: adopting MITI to learn rules and ensemble classifiers for multi-instance data[C]// AI 2011: Advances in Artificial Intelligence: LNCS Volume 7106. Berlin: Springer, 2011: 41-50. DOI: 10.1007/978-3-642-25832-9_5. [59]赵京胜, 宋梦雪, 高祥. 自然语言处理发展及应用综述[J]. 信息技术与信息化, 2019(7): 142-145. DOI: 10.3969/j.issn.1672-9528.2019.07.046. [60]SONG G, YE Y M, ZHANG H J, et al. Dynamic clustering forest: an ensemble framework to efficiently classify textual data stream with concept drift[J]. Information Sciences,2016, 357: 125-143. DOI: 10.1016/j.ins.2016.03.043. [61]HU X G, WANG H Y, LI P P. Online Biterm Topic Model based short text stream classification using short text expansion and concept drifting detection[J]. Pattern Recognition Letters, 2018, 116: 187-194. DOI: 10.1016/j.patrec. 2018.10.018. [62]KHURANA A, VERMA O P. Novel approach with nature-inspired and ensemble techniques for optimal text classification[J]. Multimedia Tools and Applications, 2020, 79(33): 23821-23848. DOI: 10.1007/s11042-020-09013-2. [63]UPADHYAY A, NGUYEN T T, MASSIE S, et al. WEC: weighted ensemble of text classifiers[C]// 2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway, NJ: IEEE, 2020: 1-8. DOI: 10.1109/CEC48606.2020. 9185641. [64]SAMAMI M, SOURE E M. Binary classification of Lupus scientific articles applying deep ensemble model on text data[C]// 2019 Seventh International Conference on Digital Information Processing and Communications (ICDIPC). Piscataway, NJ: IEEE, 2019: 12-17. DOI: 10.1109/ICDIPC.2019.8723787. [65]AGGARWAL C C, LI Y, YU P S. On supervised change detection in graph streams[C]// Proceedings of the 2020 SIAM International Conference on Data Mining (SDM). Philadelphia, PA: SIAM, 2020: 289-297. DOI: 10.1137/1.9781611976236.33. [66]TUNCER T, DOGAN S, ERTAM F, et al. A novel ensemble local graph structure based feature extraction network for EEG signal analysis[J]. Biomedical Signal Processing and Control, 2020, 61: 102006. DOI: 10.1016/j.bspc.2020.102006. [67]PAN S R, WU J, ZHU X Q, et al. Graph ensemble boosting for imbalanced noisy graph stream classification[J]. IEEE Transactions on Cybernetics, 2015, 45(5): 940-954. DOI: 10.1109/TCYB.2014.2341031. [68]LIU J, SONG C Y, ZHAO J, et al. Manifold-preserving sparse graph-based ensemble FDA for industrial label-noise fault classification[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6): 2621-2634. DOI: 10.1109/TIM.2019.2930157. [69]SU H Y, ROUSU J. Multilabel classification through random graph ensembles[J]. Machine Learning, 2015, 99(2): 231-256. DOI: 10.1007/s10994-014-5465-9. [70]SHAHI A, WOODFORD B J, DENG J D. Event classification using adaptive cluster-based ensemble learning of streaming sensor data[C]// AI 2015: Advances in Artificial Intelligence: Lecture Notes in Computer Science 9457. Cham: Springer International Publishing AG Switzerland, 2015: 505-516. DOI: 10.1007/978-3-319-26350-2_45. [71]MUZAMMAL M, TALAT R, SODHRO A H, et al. A multi-sensor data fusion enabled ensemble approach for medical data from body sensor networks[J]. Information Fusion, 2020, 53: 155-164. DOI: 10.1016/j.inffus.2019.06.021. [72]IFTIKHAR N, BAATTRUP-ANDERSENB T, NORDBJERG F E, et al. Outlier detection in sensor data using ensemble learning[J]. Procedia Computer Science, 2020, 176: 1160-1169. DOI: 10.1016/j.procs.2020.09.112. [73]ALIPPI C, NTALAMPIRAS S, ROVERI M. Model ensemble for an effective on-line reconstruction of missing data in sensor networks[C]// The 2013 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2013: 1-6. DOI: 10.1109/IJCNN.2013.6706761. [74]RODRGUEZ J, BARRERA-ANIMAS A Y, TREJO L A, et al. Ensemble of one-class classifiers for personal risk detection based on wearable sensor data[J]. Sensors, 2016, 16(10): 1619. DOI: 10.3390/s16101619. [75]GAMA J, MEDAS P, ROCHA R. Forest trees for on-line data[C]// Proceedings of the 2004 ACM Symposium on Applied Computing. New York, NY: Association for Computing Machinery, 2004: 632-636. DOI: 10.1145/967900.968033. [76]BIFET A, DE FRANCISCI MORALES G, READ J, et al. Efficient online evaluation of big data stream classifiers[C]// Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, NY: Association for Computing Machinery, 2015: 59-68. DOI: 10.1145/2783258.2783372. [77]GOMES H M, BIFET A, READ J, et al. Adaptive random forests for evolving data stream classification[J]. Machine Learning, 2017, 106(9/10): 1469-1495. DOI: 10.1007/s10994-017-5642-8. [78]GRZENDA M, GOMES H M, BIFET A. Delayed labelling evaluation for data streams[J]. Data Mining and Knowledge Discovery, 2020, 34(5): 1237-1266. DOI: 10.1007/s10618-019-00654-y. [79]BIFET A, HOLMES G, PFAHRINGER B, et al. Fast perceptron decision tree learning from evolving data streams[C]// Advances in Knowledge Discovery and Data Mining: Lecture Notes in Artificial Intelligence 6119. Berlin: Springer, 2010: 299-310. DOI: 10.1007/978-3-642-13672-6_30. [80]KUBAT M, HOLTE R C, MATWIN S. Machine learning for the detection of oil spills in satellite radar images[J]. Machine Learning,1998, 30(2): 195-215. DOI: 10.1023/A:1007452223027. [81]SANTOS A M, CANUTO A M P, FEITOSA NETO A. Evaluating classification methods applied to multi-label tasks in different domains[C]// 2010 10th International Conference on Hybrid Intelligent Systems. Piscataway, NJ: IEEE, 2010: 61-66. DOI: 10.1109/HIS.2010.5600014. [82]SHAKER A, HLLERMEIER E. Recovery analysis for adaptive learning from non-stationary data streams: experimental design and case study[J]. Neurocomputing, 2015, 150(Part A): 250-264. DOI: 10.1016/j.neucom.2014.09. 076. [83]YU H, LU J, XU J L, et al. A hybrid incremental regression neural network for uncertain data streams[C]// 2019 International Joint Conference on Neural Networks (IJCNN). Piscataway, NJ: IEEE, 2019: 1-8. DOI: 10.1109/IJCNN. 2019.8852364. [84]SHAKER A, HLLERMEIER E. Survival analysis on data streams: analyzing temporal events in dynamically changing environments[J]. International Journal of Applied Mathematics and Computer Science, 2014, 24(1): 199-212. DOI: 10.2478/amcs-2014-0015. [85]LIOBAITE· IBIFET A, PFAHRINGER B, et al. Active learning with drifting streaming data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(1): 27-39. DOI: 10.1109/TNNLS.2012.2236570. |
[1] | HU Qiang, LIU Qian, ZHOU Hangxia. Study on Phishing Website Detection Based on Improved Stacking Strategy [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 132-140. |
|