Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 47-57.doi: 10.16088/j.issn.1001-6600.2021082201

Previous Articles     Next Articles

Research on Bridgeless Boost PFC Converter with Ripple Suppression Unit Based on Single Cycle Control

WANG Dangshu*, YI Jiaan, DONG Zhen, YANG Yaqiang, DENG Xuan   

  1. School of Electrical and Control Engineering, Xi’an University of Science and Technology, Xi’an Shaanxi 710054,China
  • Online:2022-08-05 Published:2022-08-05

Abstract: In order to solve the problems of large output voltage ripple in the bridgeless Boost power factor correction (PFC) and output voltage fluctuations caused by sudden changes in output load, this paper designs a ripple suppression unit based on the bridgeless Boost PFC topology to reduce the DC output Ripple, and to increase the load current feedforward control to optimize the single-cycle control mode. Through theoretical and principle analysis, it can be known that the ripple suppression unit can reduce the DC output ripple, and the load current feedforward control can quickly collect the output current change caused by the load mutation and perform signal conditioning in time to quickly stabilize the output voltage, thereby increasing the dynamic stability of the system sex. Through simulation and comparative analysis, the ripple coefficient is reduced from 2.5% to 0.25% after using the suppression unit. After the load current feedforward control is increased, the stability of theoutput voltage can be restored in a very short time regardless of the sudden increase or decrease of the output load.And at the same time the effect of power factor correction keeps anchangeable. The simulation result verifies the correctness of the theoretical analysis.

Key words: bridgeless Boost PFC, single cycle control, ripple suppression unit, load current feed forward, control strategy

CLC Number: 

  • TM46
[1] 杨悦强,祝龙记.微电网超级电容器混合储能系统控制策略[J].广西师范大学学报(自然科学版),2021,39(2):71-80. DOI: 10.16088/j.issn.1001-6600.2020050301.
[2] 徐鑫雨,吴红飞,贾益行,等.基于三端口无桥PFC的两级式隔离型双输出AC-DC变换器[J].中国电机工程学报,2020,40(22):7431-7440. DOI: 10.13334/j.0258-8013.pcsee.200189.
[3] 马辉,郑凯通,卢云,等.一族电感耦合式Dual-Boost无桥三电平整流器[J].中国电机工程学报,2021,41(16):5705-5715. DOI: 10.13334/j.0258-8013.pcsee.201022.
[4] 郝小聿,安永泉.零电压开关PFC电路的理论设计与分析[J].电子设计工程,2022,30(4):143-146,151.DOI: 10.14022/j.issn1674-6236.2022.04.030.
[5] 解文鹏,安雨伦,郑智聪.PFC软开关技术在车载电池快速充电中的仿真研究[J].电子设计工程,2021,29(4):93-96,101.DOI: 10.14022/j.issn1674-6236.2021.04.021.
[6] 罗欢,许建平,何大印,等.临界连续导通模式Boost功率因数校正变换器的工频调节控制方法[J].电机与控制学报, 2020,24(11): 16-26.DOI: 10.15938/j.emc.2020.11.003.
[7] FONSECA Z P,NASCIMENTO C B,BADIN A A. Single-stage PFC bridgeless converter[J]. Electronics Letters,2020,56(23):1267-1270. DOI: 10.1049/el.2020.2009.
[8] 涂春鸣,肖凡,袁靖兵,等. 级联型电力电子变压器直流电压二次纹波抑制策略[J].电工技术学报,2019,34(14):2990-3003. DOI: 10.19595/j.cnki.1000-6753.tces.180612.
[9] ZHAO S Y,GE X M,WU X K,et al.Analysis and design considerations of two-stage AC-DC LED driver without electrolytic capacitor[C]// 2014 IEEE Energy Conversion Congress and Exposition(ECCE). Piscataway,NJ:IEEE,2014:2606-2610.
[10] LUO Q M,HUANG J,HE Q Q,et al.Analysis and design of a single-stage isolated AC-DC LED driver with a voltage doubler rectifier[J].IEEE Transactions on Industrial Electronics,2017,64(7):5807-5817.DOI: 10.1109/TIE.2017.2652369.
[11] 贲洪奇,王大庆,孟涛,等. 基于辅助绕组的单级桥式PFC变换器纹波抑制策略[J]. 电工技术学报,2013,28(4):58-64. DOI: 10.19595/j.cnki.1000-6753.tces.2013.04.009.
[12]NAGAO M. A novel one-stage forward-type power-factor-correction circuit[J]. IEEE Transactions on Power Electronics,2000,15(1):103-110. DOI: 10.1109/63.817368.
[13]陶海燕. 基于数字方案的单周期控制Boost PFC变换器研究[D]. 南京:南京信息工程大学,2014.
[14]温向宇. 单周期控制无桥Boost PFC技术研究[D]. 成都:西南交通大学,2014.
[15]刘潇. 基于单周期控制的Boost功率因数校正电路研究[D]. 武汉:湖北工业大学,2014.
[16]王国平,祝龙记.一种交错并联对称Boost变换器[J].广西师范大学学报(自然科学版),2020,38(4):11-20. DOI: 10.16088/j.issn.1001-6600.2020.04.002.
[17]蔡逢煌,王群兴,苗中磊,等. 基于磁集成的双Boost无桥PFC变换器研究[J].电源学报,2020,18(5):95-100. DOI: 10.13234/j.issn.2095-2805.2020.5.95.
[18]CLARK C W,MUSAVI F,EBERLE W. Digital DCM detection and mixed conduction mode control for boost PFC converters[J]. IEEE Transactions on Power Electronics,2014,29(1):347-355. DOI: 10.1109/TPEL.2013.2252471.
[19]赵文辉,沈艳霞,赵芝璞.无损软开关无桥Boost PFC变换器的研究[J].电力电子技术,2019,53(1):117-120.
[20]黎晓,马红波,庞亮.基于SiC MOSFET的无桥Boost PFC变换器研究与设计[J].电工电能新技术,2018,37(10):65-70.
[21]杨帅,王世荣,李金峰,等. 基于单周期控制的改进型无桥boost PFC电路研究[J].科技创新与应用,2017(21):21-22.
[22]王建华,艾军. 基于单周期控制的改进型无桥Boost PFC[J].电气应用,2016,35(20):73-75,78.
[23]GENG Y W,ZHANG X,LI X Q,et al.Voltage distortion suppression for off-grid inverters with an improved load current feedforward control[J]. Journal of Power Electronics,2017,17(3):716-724.
[24]王锦博,董锋斌,荔凡凡,等. 单相全桥电压型逆变器的负载电流前馈控制策略[J].电工技术,2019(23):16-18,23. DOI: 10.19768/j.cnki.dgjs.2019.23.006.
[25]袁义生,毛凯翔.基于负载电流前馈的级联H桥整流器直流电压平衡策略[J].电力自动化设备,2019,39(6):33-38,53.DOI: 10.16081/j.issn.1006-6047.2019.06.005.
[26]侯聂,宋文胜,武明义. 双向全桥DC-DC变换器的负载电流前馈控制方法[J].中国电机工程学报,2016,36(9):2478-2485. DOI: 10.13334/j.0258-8013.pcsee.2016.09.021.
[1] DAI Yunfei, ZHU Longji. Research on Switch Quasi-Z Source Bidirectional DC/DC Converter Applied to Super Capacitor Energy Storage [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 11-19.
[2] YANG Yueqiang, ZHU Longji. Control Strategy of Microgrid Super Capacitor Hybrid Energy Storage System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 71-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] MENG Chunmei, LU Shiyin, LIANG Yonghong, MO Xiaomin, LI Weidong, HUANG Yuanjie, CHENG Xiaojing, SU Zhiheng, ZHENG Hua. Electron Microscopy Study on the Apoptosis and Autophagy of the Hepatic Stellate Cells Induced by Total Alkaloids[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 76 -79 .
[2] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[3] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[4] WEN Yuzhuo, TANG Shengda, DENG Guohe. Analysis of the Ruin Time of Threshold Dividend Strategy Risk Model under Stochastic Environment[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 56 -62 .
[5] CHEN Menghua,LIU Min,WANG Ning. Predictive Power of the Weizscker-Skyrme Nuclear Mass Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 1 -8 .
[6] WAN Lei,LUO Yuling,HUANG Xingyue. Monitoring Platform for the Hardware Spike Neural Networks[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 9 -16 .
[7] LIN Yue. The Fault Diagnosis of Charging Piles Based on Hybrid AP-HMM Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 25 -33 .
[8] XIA Haiying,LIU Weitao,ZHU Yongjian. An Improved Fast SUSAN Chessboard Corner Detection Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 44 -52 .
[9] DAI Xisheng. Iterative Learning Control of Dam-River Channel Irrigation Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 53 -60 .
[10] MAO Fangfang,PANG Jinying,LI Jianming,LU Chunyi. Facile Solvothermal Synthesis and Biocompatible Evaluation of Fe3O4/Graphene Oxide Magnetic Nanocomposites in vitro[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(1): 112 -120 .