Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 35-46.doi: 10.16088/j.issn.1001-6600.2021102203

Previous Articles     Next Articles

Traffic Sign Recognition Based on CNN and Bagging Integration

TIAN Sheng*, SONG Lin   

  1. School of Civil Engineering and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China
  • Published:2022-08-05

Abstract: To solve the problem of poor category prediction effect of direct integration of simple classifiers to recognize traffic sign databases, a traffic sign recognition algorithm based on Convolutional Neural Network and Bagging ensemble learning is proposed, using crawler and image enhancement technology to expand the data set of traffic signs, and the features of traffic sign images is extracted by Convolutional Neural Network. For the characteristics of the logo image, the image data are down-sampled by using the maximum pooling layer, and the overall network structure is simplified by using a shallower network depth. On the basis of Convolutional Neural Network feature extraction, the soft voting mechanism is used to integrate Multiple Logistic, K nearest Neighbor, and SVM individual learners to obtain a better prediction result and achieve more accurate traffic sign recognition. Experimental results show that the recognition accuracy of the algorithm on the TSRD traffic sign recognition database test set has reached 93.00%, which is 11.99% higher than the recognition accuracy of the original Network model, and is higher than the recognition accuracy achieved by VGG16 and ResNet50 migration learning having a faster convergence speed.

Key words: image enhancement, convolutional neural network, transfer learning, integrated learning, traffic sign recognition

CLC Number: 

  • U463.6
[1] AlAM A, JAFFERY Z A. Indian traffic sign detection and recognition[J]. International Journal of Intelligent Transportation Systems Research, 2020, 18(1):98-112. DOI: 10.1007/s13177-019-00178-1.
[2]刘亚辰. 交通标志识别系统算法研究与设计[D]. 武汉:武汉理工大学,2017.
[3]ARDIANTO S, CHEN C J, HANG H M. Real-time traffic sign recognition using color segmentation and SVM[C]// 2017 International Conference on Systems, Signals and Image Processing (IWSSIP).Piscataway, NJ: IEEE, 2017: 1-5. DOI: 10.1109/IWSSIP.2017.7965570.
[4]宗鸣,龚永红,文国秋,等.基于稀疏学习的KNN分类[J].广西师范大学学报(自然科学版),2016,34(3):39-45. DOI: 10.16088/j.issn.1001-6600.2016.03.006.
[5]ELLAHYANI A, EL ANSARI M, EL JAAFARI I. Traffic sign detection and recognition based on random forests[J]. Applied Soft Computing, 2015, 46: 805-815. DOI: 10.1016/j.asoc.2015.12.041.
[6]徐岩,王权威,韦镇余.一种融合加权ELM和AdaBoost的交通标志识别算法[J].小型微型计算机系统,2017,38(9):2028-2032.
[7]何广焕,唐诗华,邢鹏威,等. 基于WOA-LSSVM算法的区域GNSS 高程异常拟合方法[J].桂林理工大学学报,2021,41(4):837-842.
[8]柴润泽,叶松,熊伟. 基于形状特征的花椒分选[J].桂林电子科技大学学报,2021,41(5):382-386.DOI: 10.16725/j.cnki.cn45-1351/tn.2021.05.007.
[9]韩习习,魏民,徐西义,等.基于多特征融合的交通标志识别算法[J].计算机工程与应用, 2019,55(18): 195-200. DOI: 10.3778/j.issn.1002-8331.1806-0155.
[10]DA SILVA D L, SEIJAS L M, BASTOS-FILHO C J A. Artificial bee colony optimization for feature selection of traffic sign recognition[J]. International Journal of Swarm Intelligence Research, 2017, 8(2): 50-66. DOI: 10.4018/IJSIR.2017040104.
[11]XU Y, WANG Q W, WEI Z Y, et al. Traffic sign recognition based on weighted ELM and AdaBoost[J]. Electronics Letters, 2016, 52(24): 1988-1990. DOI: 10.1049/el.2016.2299.
[12]TIMBU C, MICLEA V, LEMNARU C. Semantic segmentation-based traffic sign detection and recognition using deep learning techniques[C]// 2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP). Piscataway,NJ:IEEE, 2018: 325-331. DOI: 10.1109/ICCP.2018.8516600.
[13]唐熔钗,伍锡如.基于改进YOLO-V3网络的百香果实时检测[J].广西师范大学学报(自然科学版),2020,38(6):32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004.
[14]STEPHEN O, SAIN M, MADUH U J, et al. An efficient deep learning approach to pneumonia classification in healthcare[J]. Journal of Healthcare Engineering, 2019,2019:4180949. DOI: 10.1155/2019/4180949.
[15]柯鹏飞,蔡茂国,吴涛.基于改进卷积神经网络与集成学习的人脸识别算法[J].计算机工程,2020,46(2):262-267,273. DOI: 10.19678/j.issn.1000-3428.0053576.
[16]LI L F, WANG Y R. Improved LeNet-5 convolutional neural network traffic sign recognition[J]. International Core Journal of Engineering, 2021, 7(4): 114-121. DOI: 10.6919/ICJE.202104_7(4).0017.
[17]STALLKAMP J, SCHLIPSING M, SALMEN J, et al. Man vs. computer:benchmarking machine learning algorithms for traffic sign recognition[J]. Neural Networks, 2012, 32: 323-332. DOI: 10.1016/j.neunet.2012.02.016.
[18]ZHANG J M, WANG W, LU C Q, et al. Lightweight deep network for traffic sign classification[J]. Annals of Telecommunications, 2020, 75(7): 369-379. DOI: 10.1007/s12243-019-00731-9.
[19]ZHOU S R, LIANG W L, LI J G, et al. Improved VGG model for road traffic sign recognition[J]. Computers, Materials & Continua, 2018, 57(1): 11-24. DOI: 10.32604/cmc.2018.02617.
[20]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway,NJ:IEEE, 2016: 770-778. DOI:10.1109/CVPR.2016.90.
[21]邓文轩,杨航,靳婷.基于注意力机制的图像分类降维方法[J].广西师范大学学报(自然科学版),2021,39(2):32-40. DOI: 10.16088/j.issn.1001-6600.2020090704.
[22]GMEZ SERNA C, RUICHEK Y. Classification of traffic signs: the European dataset[J]. IEEE Access, 2018, 6: 78136-78148.DOI: 10.1109/ACCESS.2018.2884826.
[23]XU H, SRIVASTAVA G. Automatic recognition algorithm of traffic signs based on convolution neural network[J]. Multimedia Tools and Applications, 2020, 79(17): 11551-11565.DOI: 10.1007/s11042-019-08239-z.
[24]SAPIJASZKO G, ALOBAIDI T, MIKHAEL W B. Traffic sign recognition based on multilayer perceptron using DWT and DCT[C]// 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway,NJ:IEEE, 2019: 440-443. DOI: 10.1109/MWSCAS.2019.8884897.
[25]邝先验,朱磊,吴赟,等.基于Adaboost算法和颜色特征的公交车辆视频检测[J].广西师范大学学报(自然科学版),2016,34(1):9-18. DOI: 10.16088/j.issn.1001-6600.2016.01.002.
[26]TONG G F, CHEN H R, LI Y, et al. Traffic sign recognition based on SVM and convolutional neural network[C]// 2017 12th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway,NJ:IEEE, 2017: 2066-2071. DOI: 10.1109/ICIEA.2017.8283178.
[27]张功国,吴建,易亿,等.基于集成卷积神经网络的交通标志识别[J].重庆邮电大学学报(自然科学版),2019,31(4):571-577.
[28]屈治华,王琳,邵毅明,等.一种面向多视角交通标志识别的CapsNet集成算法[J].重庆理工大学学报(自然科学),2020,34(10):160-168.
[29]PALAK,SANGAL A L. Traffic signs classification using convolutional neural networks: a review[C]// 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). Piscataway,NJ:IEEE, 2021: 450-455. DOI: 10.1109/ICSCCC51823.2021.9478172.
[1] ZHOU Shengkai, FU Lizhen, SONG Wen’ai. Semantic Similarity Computing Model for Short Text Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 49-56.
[2] MA Chengxu, ZENG Shangyou, ZHAO Junbo, CHEN Hongyang. Research on Backlight Image Enhancement Based on Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 81-90.
[3] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[4] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[5] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[6] YAN Hao, XU Hongbo, SHEN Yinghan, CHENG Xueqi. Research on Open Chinese Event Detection [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 64-71.
[7] FAN Rui, JIANG Pinqun, ZENG Shangyou, XIA Haiying, LIAO Zhixian, LI Peng. Design of Lightweight Convolution Neural Network Based on Multi-scale Parallel Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 50-59.
[8] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[9] XUE Yang,ZENG Qingke,XIA Haiying,WANG Wentao. Remote Sensing Image Fusion Based on Convolutional Neural Network Super-resolution Reconstruction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(2): 33-41.
[10] SUN Shui-fa, LI Le-peng, DONG Fang-min, ZOU Yao-bin, CHEN Peng. Bi-histogram Equalization Based on Partially Overlapped Sub-block with Iterative Threshold [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 119-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!