Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 22-34.doi: 10.16088/j.issn.1001-6600.2021052502

Previous Articles     Next Articles

Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace

TONG Lingchen1,2, LI Qiang2*, YUE Pengpeng3   

  1. 1. College of Environmental Science and Engineering, Guilin University of Technology, Guilin Guangxi 541006, China;
    2. Institute of Karst Geology, CAGS/Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin Guangxi 541004, China;
    3. College of Biotechnology, Guilin Medical College, Guilin Guangxi 541199, China
  • Published:2022-08-05

Abstract: To clarify the research hotspots, directions and trends in the field of soil organic carbon (SOC) at home and abroad are explored by using bibliometric method. The CNKI and WoS databases related to karst SOC research literature in the last 30 years were retrieved, and the co-occurrence analysis of the country, annual publications and journals were carried out with CiteSpace software, as well as highlighting word analysis and cluster analysis of keywords. The literature volume in this field has been increasing year by year in the past 30 years and is in a rapid growth stage. China has the largest number of publications, and the journals Environmental Earth Sciences and China Karst ranking first in the number of publications. The main international research hotspots include“global climate change & soil respiration”, “agroecological management & soil quality”, and “forest ecosystem & soil carbon sequestration”, while the main domestic research hotspots include “karst geomorphic environment & physicochemical properties”, “land management type & vegetation restoration”, and“soil microorganisms & environmental benefits”. In future research, soil microbial properties should be linked closely with karst ecosystem functions, and applied research on hot trends such as stone desertification ecological restoration, agro-ecological health and global climate change in karst should be carried out.

Key words: karst, soil organic carbon, CiteSpace software, bibliometrics, research hotspots

CLC Number: 

  • S153
[1] GERZABEK M H, STREBL F, TULIPAN M, et al. Quantification of organic carbon pools for Austria’s agricultural soils using a soil information system[J]. Canadian Journal of Soil Science, 2005, 85(S): 491-498. DOI: 10.4141/S04-083.
[2]朱永官, 彭静静, 韦中, 等. 土壤微生物组与土壤健康[J]. 中国科学(生命科学), 2021, 51(1): 1-11. DOI: 10.1360/SSV-2020-0320.
[3]OBALUM S E, CHIBUIKE G U, PETH S, et al. Soil organic matter as sole indicator of soil degradation[J]. Environmental Monitoring and Assessment, 2017, 189(4): 176. DOI: 10.1007/s10661-017-5881-y.
[4]SINGH S, MAYES M A, SHEKOOFA A, et al. Soil organic carbon cycling in response to simulated soil moisture variation under field conditions[J]. Scientific Reports, 2021, 11(1): 10841. DOI: 10.1038/S41598-021-90359-4
[5]戴全厚, 严友进. 西南喀斯特石漠化与水土流失研究进展[J]. 水土保持学报, 2018, 32(2): 1-10. DOI: 10.13870/j.cnki.stbcxb.2018.02.001.
[6]朱柏露, 杨奇勇, 谢运球, 等. 漓江流域土地石漠化空间分布及驱动因子分析[J]. 广西师范大学学报(自然科学版), 2021, 39(3): 139-150. DOI: 10.16088/j.issn.1001-6600.2020052702.
[7]侯文娟, 高江波, 彭韬, 等. 结构—功能—生境框架下的西南喀斯特生态系统脆弱性研究进展[J]. 地理科学进展, 2016, 35(3): 320-30. DOI: 10.18306/dlkxjz.2016.03.006.
[8]黄一敏, 李心清, 杨放, 等. 中国西南喀斯特森林土壤有机碳空间变化及影响因素[J]. 地球与环境, 2016, 44(1): 1-10. DOI: 10.14050/j.cnki.1672-9250.2016.01.001.
[9]王霖娇, 李瑞, 盛茂银. 典型喀斯特石漠化生态系统土壤有机碳时空分布格局及其与环境的相关性[J]. 生态学报, 2017, 37(5): 1367-1378. DOI: 10.5846/stxb201510152081.
[10]王世杰, 刘再华, 倪健, 等. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 2017, 45(1): 2-9. DOI: 10.14050/j.cnki.1672-9250.2017.01.001.
[11]CHEN C M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377. DOI: 10.1002/asi.20317.
[12]李忠义, 韦彩会, 何铁光, 等. 基于学科知识图谱的紫云英研究态势分析[J]. 中国农机化学报, 2020, 41(7): 207-214. DOI: 10.13733/j.jcam.issn.2095-5553.2020.07.031.
[13]顾丹丹, 李雅, 刘梅, 等. 基于知识图谱的植物功能性状与环境研究前沿态势分析[J]. 广西植物, 2019, 39(6): 843-854. DOI: 10.11931/guihaia.gxzw201805041.
[14]李爽, 翟琰琦. 1999-2016年期刊《绿色化学》载文的计量分析[J]. 化学通报, 2018, 81(7): 660-666. DOI: 10.14159/j.cnki.0441-3776.2018.07.014.
[15]张殿发, 欧阳自远, 王世杰. 中国西南喀斯特地区人口、资源、环境与可持续发展[J]. 中国人口·资源与环境, 2001,11(1): 78-82.
[16]程安云, 王世杰, 李阳兵, 等. 从国家自然科学基金资助项目看喀斯特学科基础研究的发展[J]. 中国岩溶, 2008,27(2): 165-171.
[17]罗广飞, 韩志伟, 赵然, 等. 基于文献计量的中国喀斯特耕地研究进展与热点[J]. 安徽农学通报, 2020, 26(4): 113-116, 123. DOI: 10.16377/j.cnki.issn1007-7731.2020.04.044.
[18]CLASSEN A T, SUNDQVIST M K, HENNING J A, et al. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: what lies ahead?[J]. Ecosphere, 2015, 6(8): 1-21. DOI: 10.1890/ES15-00217.1.
[19]LI H W, WU Y P, CHEN J, et al. Responses of soil organic carbon to climate change in the Qilian Mountains and its future projection[J]. Journal of Hydrology, 2021, 596(156): 126110. DOI: 10.1016/J.JHYDROL.2021.126110.
[20]CHENG L, ZHANG N F, YUAN M T, et al. Warming enhances old organic carbon decomposition through altering functional microbial communities[J]. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 2017, 11(8): 1825-1835. DOI: 10.1038/ismej.2017.48.
[21]XUE K, YUAN M M, SHI Z J, et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming[J]. Nature Climate Change, 2016, 6(6): 595-600. DOI: 10.1038/nclimate2940.
[22]SUN Y Y, FU L Y, TANG G Y, et al. Seasonality in soil temperature may drive the seasonal dynamics of carbonate-derived CO2 efflux in a calcareous soil[J]. Ecosphere, 2021, 12(1): e03281. DOI: 10.1002/ECS2.3281.
[23]MA J, WENG B S, BI W X, et al. Impact of climate change on the growth of typical crops in karst areas: a case study of Guizhou Province[J]. Advances in Meteorology, 2019,2019: 1401402. DOI: 10.1155/2019/1401402.
[24]BINET S, PROBST J L, BATIOT C, et al. Global warming and acid atmospheric deposition impacts on carbonate dissolution and CO2 fluxes in French karst hydrosystems: evidence from hydrochemical monitoring in recent decades[J]. Geochimica et Cosmochimica Acta, 2020, 270: 184-200. DOI: 10.1016/j.gca.2019.11.021.
[25]LIU M, HAN G L, ZHANG Q. Effects of soil aggregate stability on soil organic carbon and nitrogen under land use change in an erodible region in Southwest China[J]. International Journal of Environmental Research and Public Health, 2019, 16(20): 3809. DOI: 10.3390/ijerph16203809.
[26]XIAO D, YE Y Y, XIAO S S, et al. Effects of tillage on CO2 fluxes in a typical karst calcareous soil[J]. Geoderma, 2019, 337: 191-201. DOI: 10.1016/J.GEODERMA.2018.09.024.
[27]HU P L, LIU S J, YE Y Y, et al. Soil carbon and nitrogen accumulation following agricultural abandonment in a subtropical karst region[J]. Applied Soil Ecology, 2018, 132:169-178. DOI: 10.1016/j.apsoil.2018.09.003.
[28]YANG L Q, LUO P, WEN L, et al. Soil organic carbon accumulation during post-agricultural succession in a karst area, Southwest China[J]. Scientific Reports, 2016, 6(1): 423-436. DOI: 10.1038/srep37118.
[29]YE Y Y, XIAO S S, LIU S J, et al. Tillage induces rapid loss of organic carbon in large macroaggregates of calcareous soils[J]. Soil and Tillage Research, 2020, 199: 104549. DOI: 10.1016/j.still.2019.104549.
[30]LI S L, XU S, WANG T J, et al. Effects of agricultural activities coupled with karst structures on riverine biogeochemical cycles and environmental quality in the karst region[J]. Agriculture, Ecosystems and Environment, 2020, 303: 107120. DOI: 10.1016/j.agee.2020.107120.
[31]LI Y, LIU X M, ZHANG L, et al. Effects of short-term application of chemical and organic fertilizers on bacterial diversity of cornfield soil in a karst area[J]. Journal of Soil Science and Plant Nutrition, 2020, 20(4): 2048-2058. DOI: 10.1007/S42729-020-00274-2.
[32]LI S, SHENG M Y, YUAN F Y, et al. Effect of land cover change on total SOC and soil PhytOC accumulation in the karst subtropical forest ecosystem, SW China[J]. Journal of Soils and Sediments, 2021, 21(7): 2566-2577. DOI: 10.1007/s11368-021-02970-7.
[33]AUKEMA J E, CARLO T A, COLLAZO J A. Landscape assessment of tree communities in the northern karst region of Puerto Rico[J]. Plant Ecology, 2007, 189(1): 101-115. DOI: 10.1007/s11258-006-9169-5.
[34]侯满福, 沈庆庚, 覃海宁. 贵州茂兰喀斯特原生性森林群落物种多样性特征[J]. 广西师范大学学报(自然科学版), 2011, 29(1): 60-65. DOI: 10.16088/j.issn.1001-6600.2011.01.036.
[35]梁士楚, 潘复静, 陆丽琴, 等. 岩溶石山废弃采石场自然恢复早期的植被动态[J]. 广西师范大学学报(自然科学版), 2009, 27(1): 75-78.
[36]张珍明, 周运超, 黄先飞, 等. 喀斯特小流域土壤有机碳密度空间异质性及影响因素[J]. 自然资源学报, 2018, 33(2): 313-324. DOI: 10.11849/zrzyxb.20161390.
[37]张珍明, 周运超, 田潇, 等. 喀斯特小流域土壤有机碳空间异质性及储量估算方法[J]. 生态学报, 2017, 37(22): 7647-7659. DOI: 10.5846/stxb201609141863.
[38]姜鑫, 黄先飞, 秦樊鑫, 等. 不同土地利用方式下喀斯特地区岩石溶蚀速率及其驱动因素[J]. 云南农业大学学报(自然科学), 2020, 35(5): 899-905. DOI: 10.12101/j.issn.1004-390X(n).201910009.
[39]景建生, 刘子琦, 罗鼎, 等. 喀斯特洼地土壤有机碳分布特征及影响因素[J]. 森林与环境学报, 2020, 40(2): 133-139. DOI: 10.13324/j.cnki.jfcf.2020.02.004.
[40]CHEN X L, CHEN H Y H. Plant diversity loss reduces soil respiration across terrestrial ecosystems[J]. Global Change Biology, 2019, 25(4): 1482-1492. DOI: 10.1111/gcb.14567.
[41]白义鑫, 盛茂银, 胡琪娟, 等. 西南喀斯特石漠化环境下土地利用变化对土壤有机碳及其组分的影响[J]. 应用生态学报, 2020, 31(5): 1607-1616. DOI: 10.13287/j.1001-9332.202005.016.
[42]姜勇祥, 蓝家程, 龙家辉. 喀斯特石漠化地区退耕模式对土壤团聚体组成和稳定性的影响[J]. 贵州师范大学学报(自然科学版), 2020, 38(4): 10-17. DOI: 10.16614/j.gznuj.zrb.2020.04.002.
[43]胡乐宁, 邓华, 吴华静, 等. 筛分强度对桂东北喀斯特典型人工林土壤团聚体的稳定性影响[J]. 广西师范大学学报(自然科学版), 2015, 33(3): 151-156. DOI: 10.16088/j.issn.1001-6600.2015.03.023.
[44]XIAO S S, ZHANG W, YE Y Y, et al. Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen, and microbial activity in a karst ecosystem[J]. Scientific Reports, 2017, 7(1):1866-1869. DOI: 10.1038/srep41402.
[45]刘霞娇, 段亚峰, 叶莹莹, 等. 耕作扰动对喀斯特土壤可溶性有机质及其组分迁移淋失的影响[J]. 生态学报, 2018, 38(19): 6981-6991. DOI: 10.5846 /stxb201708311575.
[46]张亚杰, 钱慧慧, 李伏生, 等. 不同土地管理和利用方式喀斯特坡地养分和碳库管理指数的差异[J]. 中国岩溶, 2016, 35(1): 27-35. DOI: 10.11932/karst20160105.
[47]孙沙沙, 段建军, 王小利, 等. 喀斯特小流域不同土地利用方式下土壤有机碳的组分特征[J]. 山地农业生物学报, 2018, 37(3): 49-55. DOI: 10.15958/j.cnki.sdnyswxb.2018.03.009.
[48]赵楚, 盛茂银, 白义鑫, 等. 喀斯特石漠化地区不同土地利用类型土壤氮磷有效性及其环境影响因子[J]. 应用生态学报, 2021, 32(4): 1383-1392. DOI: 10.13287/j.1001-9332.202104.018.
[49]江周, 何寻阳, 韦映雪, 等. 广西西北喀斯特不同植被不同土层的土壤颗粒有机质[J]. 湖南农业大学学报(自然科学版), 2020, 46(2): 198-205, 252. DOI: 10.13331/j.cnki.jhau.2020.02.012.
[50]高贵锋, 褚海燕. 微生物组学的技术和方法及其应用[J]. 植物生态学报, 2020, 44(4): 395-408. DOI: 10.17521/cjpe.2019.0222.
[51]陈家瑞, 曹建华, 李涛, 等. 西南典型岩溶区土壤微生物数量研究[J]. 广西师范大学学报(自然科学版), 2010, 28(4): 96-100. DOI: 10.16088/j.issn.1001-6600.2010.04.015.
[52]KNIEF C, DELMOTTE N L, CHAFFRON S, et al. Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice[J]. The ISME Journal, 2012, 6(7): 1378-1390. DOI: 10.1038/ismej.2011.192.
[53]张晓晓, 王苗苗, 冯书珍, 等. 岩性与植被类型对喀斯特土壤AM真菌群落的影响[J]. 广西师范大学学报(自然科学版), 2019, 37(2): 158-167. DOI: 10.16088/j.issn.1001-6600.2019.02.020.
[54]李选文, 熊智, 喊也, 等. 西南典型喀斯特地区石漠化可培养石生细菌多样性研究[J]. 干旱区资源与环境, 2021, 35(7): 177-182. DOI: 10.13448/j.cnki.jalre.2021.202.
[55]张彧娜, 周晓果, 温远光, 等. 喀斯特地区三种人工林土壤微生物群落结构特征[J/OL]. 广西植物[2021-05-01]. https:∥kns.cnki.net/kcms/detail/45.1134.Q.20210511.0907.002.html. DOI: 10.11931/guihaia.gxzw202102020.
[56]喻国军, 谢晓尧. 喀斯特地区造林对土壤团聚体稳定性及微生物碳代谢活性的影响[J]. 水土保持研究, 2020, 27(6): 21-27, 36. DOI: 10.13869/j.cnki.rswc.2020.06.003.
[57]金章利, 刘高鹏, 周明涛, 等. 喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究[J]. 水土保持研究, 2020, 27(3): 37-44. DOI: 10.13869/j.cnki.rswc.2020.03.006.
[58]喻文强, 许超, 米屹东, 等. 喀斯特地区土壤微生物功能多样性对生态演替的响应: 以贵州茂兰国家自然保护区为例[J]. 地质通报, 2020, 39(4): 574-581.
[1] TANG Chuangbin, DONG Peipei, HUANG Qiuchan, TAN Weining, ZHOU Qihai, WANG Guohai. Comparison of Seed Removal Behavior of Rodents to Kmeria septentrionalis and Cyclobalanopsis glauca in the Karst Habitat [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 199-204.
[2] XIAO Fei, DING Xusheng, WANG Weihong. Research Progress of Aerobic Granular Sludge Based on Bibliometric Analysis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 1-14.
[3] MO Yanhua, ZOU Han, MA Jiangming, LI Yufeng, JIAN Rui, QIN Jiashuang, SONG Zunrong, LIN Zhengzhong. Variation of Soil Temperature and Moistureat Different Successional Stages of Loropetalum chinense Communities in Karst Hills of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 122-130.
[4] ZHU Bailu, YANG Qiyong, XIE Yunqiu, DENG Yan, TANG Meirong, LIU Dacun, ZENG Hongchun. Spatial Distribution and Driving Factors of Karst Rocky Desertification in Lijiang River Basin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(3): 139-150.
[5] LI Youbang, NONG Juanli, YANG Wanlin, ZHAO Jiajia, ZHU Qiqi. Daily Activity Patterns of Two Sympatric Squirrels Callosciurus erythraeus and Dremomys rufigenis in Nonggang, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(1): 71-78.
[6] YOU Jing, QI Yueming, SHAO Guangyu, MA Chao, YANG Yaqi, PEI Yifeng. Hydrochemical Characteristics and Main Ion Sourcesof Shallow Groundwater in Zihe River Source Region, Shandong, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 132-139.
[7] LIN Jianzhong, LI Shengqiang, WANG Guohai, SHI Zepan, LIU Jia, WANG Zhenxing, ZHOU Qihai. Comparison of Hectare and Kilometer Grid Sampling Strategy with Camera Traps: a Case Study in Nonggang National Nature Reserve, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 92-103.
[8] ZHOU Junniu, MEI Junlin, MA Jiangming, ZHANG Yajun, WANG Haimiao, JIAN Rui. Characteristics of Clonal Reproduction of Alchornea trewioides in Karst Region of Guilin, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 110-116.
[9] TANG Chuangbin, WANG Guohai, SHI Zepan, LI Shengqiang, HUANG Zhenhua, WANG Zhenxing, ZHOU Qihai. Activity Rhythm and Time Budget of the Red-bellied Squirrels (Callosciurus erythralus) Based on Infrared Camera Data [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 133-139.
[10] LIU Jia, LI Shengqiang, WANG Guohai, LIN Jianzhong, XIAO Zhishu, ZHOU Qihai. Activity Rhythm, Time Budgets and Flocking Behavior of Silver Pheasant (Lophura nycthemera) in the Karst Habitat [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 156-165.
[11] ZHANG Xiaoxiao, WANG Miaomiao, FENG Shuzhen, QIU Husen, GAI Shuangshuang, ZHAO Lei, HU Yajun, HE Xunyang, LU Zujun. Effects of Lithology and Vegetation Type on the Soil AM Fungi Community in Karst Region [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 158-167.
[12] ZHANG Yajun, MA Jiangming, SU Jing, QIN Jiashuang, MO Yanhua. Tolerance Evaluation and Physiological Responses of the ClonalPlant Alchornea trewioides in Karst Rocky Mountains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(4): 151-158.
[13] LI Yuhui, CHEN Zening, HUANG Zhonghao, ZHOU Qihai. Activity Time Budget of Assamese macaque (Macaca assamensis) during Rainy Season in Nonggang Nature Reserve, Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 80-86.
[14] YAN Yan, HU Baoqing, HOU Manfu, SHI Shana. Suitability Assessment of Karst Rocky Desertification Control Patternsin Karst Counties of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(4): 145-153.
[15] TANG Dandan, MA Jiangming, LI Haixia. Flora of Vascular Plant in Fengshui Woods on Karst Hills of Guilin [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 126-132.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!