Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 199-204.doi: 10.16088/j.issn.1001-6600.2021030503

Previous Articles     Next Articles

Comparison of Seed Removal Behavior of Rodents to Kmeria septentrionalis and Cyclobalanopsis glauca in the Karst Habitat

TANG Chuangbin1,2, DONG Peipei1, HUANG Qiuchan1, TAN Weining3, ZHOU Qihai2,4*, WANG Guohai 1*   

  1. 1. College of Chemistry and Bioengineering, Guangxi Normal University for Nationalities, Chongzuo Guangxi 532200, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education(Guangxi Normal University), Guilin Guangxi 541006, China;
    3. Administrative Bureau of Mulun National Nature Reserve, Huanjiang Guangxi 547100, China;
    4. Guangxi Key Laboratory of Rare and Endangered Animal Ecology (Guangxi Normal University), Guilin Guangxi 541006, China
  • Published:2022-08-05

Abstract: Seed removal behavior of rodents is of great significance to the regeneration and diffusion of plant population. The seeds of Kmeria septentrionalis and Cyclobalanopsis glauca with different sizes were placed in four karst microhabitats (stone cavern, stone groove, stone surface, and soil surface) from September to October, 2019.The differences of seed removal rate in different microhabitats were compared to explore the effects of karst microhabitat and seed size on rodent removal behavior. The results showed that there was a significant difference in the removal rate between the seeds of K. septentrionalis and C. glauca (Z=-21.902, P<0.001), and rodents preferred to remove the seeds with smaller volume (93.56%±0.99% vs 7.41%±0.65%). The removal rates of K. septentrionalis were significantly different from those of C. glauca in all same microhabitats (P<0.001), and the average seed removal rate in the microhabitats of stone cave (53.41%±3.60%), stone groove (51.31%±3.66%) and stone surface (49.19%±3.59%) were higher than that of soil surface microhabitat (45.37%±3.59%). Microhabitat and seed size are important factors that affect the seed removal of rodents, and the results show that the removal behavior of rodents to plant seeds is the result of the interaction of karst microhabitat and seed size.

Key words: Kmeria septentrionalis, Cyclobalanopsis glauca, seed removal, rodents, sympatry, karst microhabitat

CLC Number: 

  • Q948.122.5
[1] BOGDZIEWICZ M, CRONE E E, ZWOLAK R. Do benefits of seed dispersal and caching by scatter-hoarders outweigh the costs of predation? An example with oaks and yellow-necked mice[J]. Journal of Ecology, 2020, 108(3): 1009-1018. DOI: 10.1111/1365-2745.13307.
[2]YADOK B G, FORGET P M, GERHARD D, et al. Seed nutrient content rather than size influences seed dispersal by scatter-hoarding rodents in a West African montane forest[J]. Journal of Tropical Ecology, 2020, 36(4): 174-181. DOI: 10.1017/s026646 7420000127.
[3]JANSEN P A, VISSER M D, JOSEPH WRIGHT S, et al. Negative density dependence of seed dispersal and seedling recruitment in a neotropical palm[J]. Ecology Letters, 2014, 17(9): 1111-1120. DOI: 10.1111/ele.12317.
[4]STEELE M A, ROMPR G, STRATFORD J A, et al. Scatter-hoarding rodents favor higher predation risks for cache sites: the potential for predators to influence the seed dispersal process[J]. Integrative Zoology, 2015, 10(3): 257-266. DOI: 10.1111/1749-4877.12134.
[5]DIMITRI L A, LONGLAND W S, VANDER-WALL S B. Cone and seed traits of two Juniperus species influence roles of frugivores and scatter-hoarding rodents as seed dispersal agents[J]. Acta Oecologica, 2017, 85: 93-103. DOI: 10.1016/j.acta o.2017.09.012.
[6]DYLEWSKI , ORTEGA Y K, BOGDZIEWICZ M, et al. Seed size predicts global effects of small mammal seed predation on plant recruitment[J]. Ecology Letters, 2020, 23(6): 1024-1033. DOI: 10.1111/ele.13499.
[7]ALIYU B, THIA J A, MOLTCHANOVA E, et al. Forest disturbance and seasonal food availability influence a conditional seed dispersal mutualism[J]. Biotropica, 2018, 50(5): 750-757. DOI: 10.1111/btp.12570.
[8]SHIMADA T, TAKAHASHI A, SHIBATA M, et al. Effects of within-plant variability in seed weight and tannin content on foraging behaviour of seed consumers[J]. Functional Ecology, 2015, 29(12): 1513-1521. DOI: 10.1111/1365-2435.12464.
[9]GARCA-HERNNDEZ M D L , LPEZ-BARRERA F, V SQUEZ-REYES V M. Microhabitat affects acorn removal in three sympatric and endangered Neotropical oak species[J]. Ecological Research, 2016, 31(3): 343-351. DOI: 10.1007/s 11284-016-13422.
[10]PEREA R, SAN MIGUEL A, MARTNEZ-JAUREGUI M, et al. Effects of seed quality and seed location on the removal of acorns and beechnuts[J]. European Journal of Forest Research, 2012, 131(3): 623-631. DOI: 10.1007/s10342-011-0536-y.
[11]潘春柳, 赖家业, 黎向东, 等. 单性木兰种子雨与天然更新的初步调查[J]. 生态学杂志, 2008, 27(12): 2235-2239.
[12]WANG G H, YANG Z X, CHEN P, et al. Seed dispersal of an endangered Kmeria septentrionalis by frugivorous birds in a karst habitat[J]. Pakistan Joural of Zoology, 2019, 51(3): 1195-1198. DOI: 10.17582/journal.pjz/2019.51.3.sc5.
[13]WANG G H, PAN Y, QIN G L, et al. Effects of microhabitat on rodent-mediated seed removal of endangered Kmeria septentrionalis in the karst habitat[J]. PeerJ, 2020, 8: e10378. DOI: 10.7717/peerj.10378.
[14]肖治术, 张知彬, 王玉山. 小泡巨鼠对森林种子选择和贮藏的观察[J]. 兽类学报, 2003, 23(3): 208-213.
[15]CHANG G, XIAO Z S, ZHANG Z B. Hoarding decisions by Edwards long-tailed rats (Leopoldamys edwardsi) and South China field mice (Apodemus draco): the responses to seed size and germination schedule in acorns[J]. Behavioural Processes, 2009, 82(1): 7-11. DOI: 10.1016/j.beproc.2009.03.002.
[16]XIAO Z S, WANG Y S, HARRIS M, et al. Spatial and temporal variation of seed predation and removal of sympatric large-seeded species in relation to innate seed traits in a subtropical forest, Southwest China[J]. Forest Ecology and Management, 2006, 222(1/2/3): 46-54. DOI: 10.1016/j.foreco.2005.10.020.
[17]金俊彦, 覃文更, 罗柳娟, 等. 濒危植物单性木兰群落优势种群生态位研究[J]. 广西植物, 2013, 33(3): 300-305.
[18]PAN Y, BAI B, XIONG T S, et al. Seed handling by primary frugivores differentially influence post-dispersal seed removal of Chinese yew by ground-dwelling animals[J]. Integrative Zoology, 2016, 11(3): 191-198. DOI: 10.1111/1749-487 7.12189.
[19]刘方, 王世杰, 罗海波, 等. 喀斯特森林生态系统的小生境及其土壤异质性[J]. 土壤学报, 2008, 45(6): 1055-1062.
[20]刘筝, 李友邦, 黄中豪. 桂林七星公园猕猴对游客的行为反应[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 114-121.
[21]The R Core Team. R: a language and environment for statistical computing[M]. Boston:R Foundation for Statistical Computing, 2016.
[22]黄品鲜, 周永红, 赖家业, 等. 珍稀濒危植物单性木兰种皮的挥发性成分分析[J]. 广西植物, 2010, 30(5): 691-695.
[23]HOLLANDER J L, VANDER WALL S B, LONGLAND W S. Olfactory detection of caches containing wildland versus cultivated seeds by granivorous rodents[J]. Western North American Naturalist, 2012, 72(3): 339-347. DOI: 10.3398/064.072.0308.
[24]YI X F, WANG Z Y, ZHANG H M, et al. Weak olfaction increases seed scatter-hoarding by Siberian chipmunks: implication in shaping plant-animal interactions[J]. Oikos, 2016, 125(12): 1712-1718. DOI: 10.1111/oik.03297.
[25]FLEURY M, GALETTI M. Forest fragment size and microhabitat effects on palm seed predation[J]. Biological Conservation, 2006, 131(1): 1-13. DOI: 10.1016/j.bioco-n.2005.10.049.
[26]CHRISTIANINI A V, GALETTI M. Spatial variation in post-dispersal seed removal in an Atlantic forest: effects of habitat, location and guilds of seed predators[J]. Acta Oecologica, 2007, 32(3): 328-336. DOI: 10.1016/j.actao.2007.06.004.
[1] ZHANG Shiyan, XIE Qiang, HUANG Lijuan, HUANG Qing, FENG Xueyu, SU Hualong. Niche Analysis of Main Populations in Cyclobalanopsis glauca Community in Lingqu Basin of Guangxi, China [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 162-173.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!