Journal of Guangxi Normal University(Natural Science Edition) ›› 2021, Vol. 39 ›› Issue (6): 162-173.doi: 10.16088/j.issn.1001-6600.2020110206

Previous Articles     Next Articles

Niche Analysis of Main Populations in Cyclobalanopsis glauca Community in Lingqu Basin of Guangxi, China

ZHANG Shiyan1,2, XIE Qiang1,2*, HUANG Lijuan1,2, HUANG Qing1,2, FENG Xueyu1,2, SU Hualong1,2   

  1. 1. College of Life Sciences, Guangxi Normal University, Guilin Guangxi 541006, China;
    2. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin Guangxi 541006, China
  • Received:2020-11-02 Revised:2021-03-02 Online:2021-11-25 Published:2021-12-08

Abstract: To understand the niche characteristics of the main woody plant populations in the Cyclobalanopsis glauca community in Lingqu basin, quantitative analysis was carried for the niche of the main species in the arbor layer and shrub layer of the C. glauca community by using the niche breadth of Levins and Shannon-Wiener, the niche overlap of pianka and the niche proportional similarity of Schoener. The results showed that:1) The species with larger importance values generally had larger niche breadth,but the rank orders of which were not exactly the same. 2)C. glauca and Pistacia weinmannifolia in the arbor layer, Alchornea trewioides and Loropetalum chinense in the shrub layer had higher niche breadth than other species. 3)In the C. glauca community, the niche overlap and niche proportional similarity of the main plant populations were concentrated at a low level, (niche overlap values: 0.1-0.4 for arbor layer species, 0-0.2 for shrub layer species; niche proportional similarity value: 0.2-0.5 for arbor layer species, 0-0.4 for shrub layer species), which indicated that the similarity degree of species’ utilization of environmental resources was not high. 4)There was no significant correlation between niche breadth and niche overlap, when the niche breadth of species was large but the niche overlap was not necessarily high, and when the niche breadth was small, the niche overlap was not necessarily low. 5) The niche proportional similarity of species with large niche overlap value was also large. The C. glauca community belongs to the top zone community. The competition among species is not fierce and the inter specific relationship is harmonious, but the species regeneration is slow and demonstrates a declining trend.

Key words: Cyclobalanopsis glauca, ecological niches, multiformity, species community, re-vegetation, Lingqu basin of Guangxi, China

CLC Number: 

  • S718.5
[1] 陈瑞国, 范少辉, 刘广路, 等. 海南岛次生低地雨林棕榈藤伴生群落优势种生态位研究[J]. 西北植物学报, 2017, 37(6): 1226-1233. DOI:10.7606/j.issn.1000-4025.2017.06.1226.
[2] 李军玲, 张金屯. 太行山中段植物群落优势种生态位研究[J]. 植物研究, 2006, 26(2): 156-162. DOI: 10.3969/j.issn.1673-5102.2006.02.009.
[3] LOU Y J, GAO C Y, PAN Y W, et al. Niche modelling of marsh plants based on occurrence and abundance data[J]. Science of the Total Environment, 2018, 616/617: 198-207. DOI: 10.1016/j.scitotenv.2017.10.300.
[4] 黄艺, 黄木柯, 柴立伟, 等. 干旱半干旱区土壤微生物空间分布格局的成因[J]. 生态环境学报, 2018, 27(1): 191-198. DOI: 10.16258/j.cnki.1674-5906.2018.01.026.
[5] SULLIVAN M J P, DAVY A J, GRANT A, et al. Is saltmarsh restoration success constrained by matching natural environments or altered succession? A test using niche models[J]. Journal of Applied Ecology, 2018, 55(3): 1207-1217. DOI: 10.1111/1365-2664.13033.
[6] BRÅTHEN K A, RAVOLAINEN V T. Niche construction by growth forms is as strong a predictor of species diversity as environmental gradients[J]. Journal of Ecology, 2015, 103(3): 701-713. DOI: 10.1111/1365-2745.12380.
[7] FORT H. Community diversity and total abundance: Quantitative predictions from competition nichetheory[J]. Ecological Complexity, 2015, 21: 120-127. DOI: 10.1016/j.ecocom.2014.12.001.
[8] 冯宜明, 陈学龙, 齐瑞, 等. 甘肃亚高山云杉人工林下植物种群生态位特征[J]. 草业科学, 2018, 35(4): 807-815. DOI: 10.11829/j.issn.1001-0629.2017-0236.
[9] 刘润红, 姜勇, 常斌, 等. 漓江河岸带枫杨群落主要木本植物种间联结与相关分析[J]. 生态学报, 2018, 38(19): 6881-6893. DOI: 10.5846/stxb201802270396.
[10] 卢峰. 广西岩溶土地现状与石漠化治理模式探析[J]. 广西林业科学, 2012, 41(2): 183-185. DOI: 10.19692/j.cnki.gfs.2012.02.025.
[11] 贺斐, 刘灿, 肖自强. 生态文明视角下喀斯特石漠化山区的耕保探索:以广西为例[J]. 中国土地, 2020(3): 52-54. DOI: 10.13816/j.cnki.ISSN1002-9729.2020.03.16.
[12] 关健超, 覃良伟, 陈丽, 等. 广西岩溶地区石漠化动态变化及林业防治措施[J]. 安徽农业科学, 2017, 45(3): 187-189. DOI: 10.13989/j.cnki.0517-6611.2017.03.062.
[13] 许景璇,代俊峰.漓江流域上游径流变化分析[J].人民长江, 2018, 49(10): 41-46. DOI: 10.16232/j.cnki.1001-4179.2018.10.009.
[14] 孙平安, 于奭, 莫付珍, 等. 不同地质背景下河流水化学特征及影响因素研究: 以广西大溶江、灵渠流域为例[J]. 环境科学, 2016, 37(1): 123-131. DOI: 10.13227/j.hjkx.2016.01.017.
[15] 蒋原伦. 灵渠[J]. 民主, 2020(11): 47-54. DOI: 10.19402/j.cnki.zgmz.2020.11.023.
[16] 朱柏露, 杨奇勇, 谢运球, 等. 漓江流域土地石漠化空间分布及驱动因子分析[J]. 广西师范大学学报(自然科学版), 2021,39(3): 139-150. DOI: 10.16088/j.issn.1001-6600.2020052702.
[17] 向悟生, 李先琨, 丁涛, 等. 漓江流域上游植被景观格局演变特征分析[J]. 广西科学, 2009, 16(4): 455-459. DOI:10.13656/j.cnki.gxkx.2009.04.020.
[18] 唐朝辉. 兴安县林业生态建设与发展的思考[J]. 农业开发与装备, 2017(5): 37-38. DOI:10.3969/j.issn.1673-9205.2017.05.030.
[19] 桂林市人大旅游委、桂林市经济学会联合课题组. 实施泛漓江生态水系工程加快构建世界一流旅游域:灵渠、相思埭保护与持续发展研究报告[J]. 传承, 2014(4): 16-21. DOI: 10.16743/j.cnki.cn45-1357/d.2014.04.044.
[20] 张紧紧, 熊康宁, 李瑞. 喀斯特石漠化综合治理植被恢复技术研究进展[J]. 中国饲料, 2020(5): 5-10. DOI: 10.15906/j.cnki.cn11-2975/s.20200503.
[21] 付帮奎. 喀斯特石漠化区植被建植与退化植被恢复技术推广示范研究[J]. 农业与技术, 2016, 36(2): 183-184. DOI: 10.11974/nyyjs.20160133156.
[22] 文丽, 宋同清, 杜虎, 等. 中国西南喀斯特植物群落演替特征及驱动机制[J]. 生态学报, 2015, 35(17): 5822-5833. DOI: 10.5846/stxb201310192524.
[23] 龙时胜, 曾思齐, 肖化顺, 等. 基于林木生长阶段的青冈栎生长方程研究[J]. 西北林学院学报, 2018, 33(6): 204-209,286. DOI: 10.3969/j.issn.1001-7461.2018.06.32.
[24] 胡拉, 吴东山, 徐慧兰, 等. 青冈栎天然林木材的解剖特征及基本材性研究[J]. 西南林业大学学报, 2018, 38(2): 206-210. DOI: 10.3969/j.issn.2095-1914.2018.02.034.
[25] 李先琨, 苏宗明, 吕仕洪, 等. 广西岩溶植被自然分布规律及对岩溶生态恢复重建的意义[J]. 山地学报, 2003,21(2): 129-139. DOI: 10.16089/j.cnki.1008-2786.2003.02.001.
[26] 张忠华, 胡刚. 喀斯特山地青冈栎群落优势种的种间关系分析[J]. 生态环境学报, 2011, 20(8): 1209-1213. DOI: 10.3969/j.issn.1674-5906.2011.08.004.
[27] 黄冬柳, 梁士楚, 姜勇. 桂林岩溶石山青冈种群数量动态[J]. 生态学杂志, 2019, 38(3): 663-671. DOI: 10.13292/j.1000-4890.201903.023.
[28] 刘润红, 白金连, 包含, 等. 桂林岩溶石山青冈群落主要木本植物功能性状变异与关联[J]. 植物生态学报, 2020, 44(8): 828-841. DOI: 10.17521/cjpe.2019.0146.
[29] 张中峰, 黄玉清, 莫凌, 等. 桂林岩溶区青冈栎光合速率与环境因子关系初步研究[J]. 广西植物, 2008,28(4): 478-482. DOI: 10.3969/j.issn.1000-3142.2008.04.013.
[30] 潘复静, 张中峰, 黄玉清, 等. 基于年轮分析的桂林岩溶区青冈栎地上生物量研究[J]. 广西植物, 2012, 32(4): 464-467,482. DOI: 1000-3142(2012)04-0464-04.
[31] 王静, 徐广平, 曾丹娟, 等. 岩溶区和非岩溶区两种优势植物凋落叶分解的比较研究[J]. 广西植物, 2013, 33(3): 338-345. DOI: 1000-3142(2013)03-0338-08.
[32] 孙连群, 黄莹. 灵渠景观的保护与开发研究[J]. 现代园艺, 2015(23): 99-101. DOI: 10.14051/j.cnki.xdyy.2015.23.061.
[33] 袁在翔, 金雪梅, 马婷瑶, 等. 南京灵谷寺栓皮栎种群结构与动态[J]. 生态学杂志, 2017, 36(6): 1488-1494. DOI:10.13292/j.1000-4890.201706.013.
[34] LEVINS R. Evolution in changing environments: some theoreticalexplorations[M]. Princeton: Princeton University Press, 1968. DOI: 10.1515/9780691209418.
[35] COLWELL R K, FUTUYMA D J. On the measurement of niche breadth andoverlap[J]. Ecology, 1971, 52(4): 567-576. DOI: 10.2307/1934144.
[36] PIANKA E R. The structure of lizard communities[J]. Annual Review of Ecology and Systematics, 1973, 4:53-74. DOI:10.1146/annurev.es.04.110173.000413.
[37] 潘高, 张合平, 潘登. 南方红壤丘陵区3种森林群落内主要草本植物种群生态位特征[J]. 草业科学, 2015, 32(12): 2094-2106. DOI: 10.11829/j.issn.1001-0629.2015-0246.
[38] 高浩杰, 袁佳, 高平仕. 舟山群岛次生林优势种群的生态位与种间联结[J]. 热带亚热带植物学报, 2017, 25(1): 73-80. DOI: 10.11926/jtsb.3620.
[39] 谢春平, 刘大伟, 南程慧, 等. 浙江长兴金钱松群落优势种生态位分析[J]. 植物资源与环境学报, 2020, 29(5): 58-65. DOI: 10.3969/j.issn.1674-7895.2020.05.07.
[40] 吴凯. 光竞争环境下杉木幼苗形态可塑性及生理响应研究[D]. 福州:福建农林大学, 2018. DOI: 10.27018/d.cnki.gfjnu.2018.000062.
[41] 黄甫昭, 李冬兴, 王斌, 等. 喀斯特季节性雨林优势种群生态位特征及其对石漠化地区植被修复的启示[J]. 广西科学, 2018, 25(5): 599-610. DOI: 10.13656/j.cnki.gxkx.20181030.006.
[42] 卢炜丽, 张洪江, 陈奇伯, 等. 重庆四面山杉木林群落乔木层优势种群生态位特征研究[J]. 西北林学院学报, 2016, 31(2): 60-65. DOI: 10.3969/j.issn.1001-7461.2016.02.11.
[43] 陈丝露, 赵敏, 李贤伟, 等. 柏木低效林不同改造模式优势草本植物多样性及其生态位[J]. 生态学报, 2018, 38(1): 143-155. DOI: 10.5846/stxb201610202152.
[44] 龚辉. 闽北正红菇宿地森林群落主要种群高度生态位[J].北华大学学报(自然科学版), 2020, 21(6): 812-817. DOI: 10.11713/j.issn.1009-4822.2020.06.025.
[45] 李安定, 李苇洁, 唐金刚. 贵州喀斯特石漠化区白刺花群落主要种群生态位分析[J]. 湖北农业科学, 2013, 52(14): 3286-3289. DOI: 10.14088/j.cnki.issn0439-8114.2013.14.001.
[46] 刘润红, 陈乐, 涂洪润, 等. 桂林岩溶石山青冈群落灌木层主要物种生态位与种间联结[J]. 生态学报, 2020, 40(6): 2057-2071. DOI: 10.5846/stxb201904090689.
[47] 王霞, 铁军, 刘泽宇. 山西陵川南方红豆杉群落优势种生态位特征[J]. 生态科学, 2017, 36(5): 64-72. DOI: 10.14108/j.cnki.1008-8873.2017.05.009.
[48] 吴倩楠, 董建文, 郑宇, 等. 百里杜鹃国家森林公园优势种生态位研究[J]. 南京林业大学学报(自然科学版), 2017, 41(2): 175-180. DOI: 10.3969/j.issn.1000-2006.2017.02.026.
[49] 哀建国, 吴谷汉, 陈锦宇, 等. 石垟林场省级森林公园常绿阔叶林种群生态位特征[J]. 浙江大学学报(农业与生命科学版), 2006,32(5): 576-584. DOI: 10.3321/j.issn:1008-9209.2006.05.020.
[50] 董冬, 许小天, 周志翔, 等. 安徽九华山风景区古树群落主要种群生态位的动态变化[J]. 生态学杂志, 2019, 38(5): 1292-1304. DOI: 10.13292/j.1000-4890.201905.023.
[1] LI Yufeng, QIN Jiashuang, MA Jiangming, YANG Zhangqi, LI Mingjin, LU Shaohao, SONG Zunrong. Establishment of Above-ground Biomass Model and Distribution Characteristics of Pinus massoniana Plantations in Southern Subtropical [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 170-180.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .