Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 1-14.doi: 10.16088/j.issn.1001-6600.2021041501

    Next Articles

Research Progress of Aerobic Granular Sludge Based on Bibliometric Analysis

XIAO Fei, DING Xusheng, WANG Weihong*   

  1. College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi Xinjiang 830052, China
  • Received:2021-04-15 Revised:2021-06-30 Published:2022-05-31

Abstract: In order to understand the research status and hotspot of aerobic granular sludge (AGS) at home and abroad, bibliometrics was used to review and summarize the global literatures on AGS published between 2008 and 2021 based on the China National Knowledge Network (CNKI) database and the Web of Science core database. At the same time, VosViewer visualization tool was used to conduct keyword co-occurrence cluster analysis, and various knowledge graphs were drawn to show the evolution of knowledge in AGS research field at home and abroad. Key words analysis showed that the application of AGS in the treatment of different types of wastewater, the utilization of AGS multiple biological functions (nitrogen and phosphorus removal), the formation mechanism and conditions of AGS, enhanced granulation and continuous stability cultivation were the main research hotspots of AGS. The research progress of AGS in China has been increasing rapidly, mainly focusing on the formation mechanism of AGS. Overseas research focuses on the types of AGS start-up reactor and disintegration and recovery. The rapid granulation and stable culture of AGS, the synergisation of various functional microorganisms, and the continued expansion of the efficient utilization of AGS in different fields may become the research hotspots in the future.

Key words: aerobic granular sludge, bibliometrics, VOSviewer, cluster analysis, knowledge map

CLC Number: 

  • X703
[1] 苏海佳, 王陆玺, 邓爽, 等. 好氧颗粒污泥技术及研究进展[J]. 化工进展, 2016, 35(6): 1914-1922.
[2] 郝晓地, 孙晓明, LOOSDRECHT M. 好氧颗粒污泥技术工程化进展一瞥[J]. 中国给水排水, 2011, 27(20): 9-12.
[3] PRONK M, DE KREUK M K, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84: 207-217.
[4] 肖鹏飞, 安璐, 吴德东. 基于文献计量学分析的全球生物质炭研究进展[J]. 农业工程学报, 2020, 36(18): 292-300.
[5] 骆靖阳, 陆柏益. 基于文献计量学的食品大数据技术研究分析[J]. 食品科学, 2021, 42(5): 278-287.
[6] 史进程, 郭洪飞, 张儒, 等. 基于知识图谱的物联网研究文献计量分析[J]. 计算机集成制造系统, 2021, 27(1): 228-239.
[7] 许智勇, 马爱民. 基于文献计量的全球营养基因组学研究态势分析[J]. 食品科学, 2020, 41(5): 237-245.
[8] 明婕, 黄子萌, 董清林, 等. 好氧颗粒污泥的性质及形成机制[J]. 水处理技术, 2019, 45(7): 1-5.
[9] 常笑丽, 何士龙, 刘浩. 好氧颗粒污泥快速培养的方法研究[J]. 环境工程, 2015, 33(8): 27-31.
[10] 黄思琦, 邓风, 佘谱颖, 等. 好氧颗粒污泥快速培养及其稳定性研究[J]. 工业水处理, 2018, 38(7): 66-69,73.
[11] 王琳, 李煜. 酸度对好氧颗粒污泥生物吸附含铅废水影响的研究[J]. 环境工程学报, 2009, 3(7): 1160-1164.
[12] 梁东博, 卞伟, 王文啸, 等. 低温条件下好氧颗粒污泥培养及其脱氮性能研究[J]. 中国环境科学, 2019, 39(2): 634-640.
[13] AB HALIM M H, NOR ANUAR A, ABDUL JAMAL N S, et al. Influence of high temperature on the performance of aerobic granular sludge in biological treatment of wastewater[J]. Journal of Environmental Management, 2016, 184(2): 271-280.
[14] 沈忱, 张玉蓉, 李艾莉, 等. 低曝气量下好氧颗粒污泥的性能分析[J]. 工业水处理, 2015, 35(10): 76-79.
[15] WANG H Y, SONG Q, WANG J, et al. Simultaneous nitrification, denitrification and phosphorus removal in an aerobic granular sludge sequencing batch reactor with high dissolved oxygen: effects of carbon to nitrogen ratios[J]. Science of the Total Environment, 2018, 642: 1145-1152.
[16] LI D, WEI Z Q, LAO H M, et al. Effect of step aeration on a municipal sewage aerobic granular sludge system[J]. Environmental Science, 2019, 40(12): 5456-5464.
[17] 陈启伟, 苏馈足, 陈丁丁, 等. 处理番茄酱加工废水的活性污泥颗粒化过程[J]. 环境科学研究, 2018, 31(2): 369-378.
[18] 廖杰, 叶嘉琦, 曾志超, 等. 好氧颗粒污泥处理畜禽养殖沼液污染物的特性[J]. 环境科学, 2019, 40(6): 2821-2826.
[19] 饶钦富, 郑博福, 万金保. 好氧颗粒污泥处理猪场废水研究进展[J]. 水处理技术, 2016, 42(10): 25-29.
[20] 陈垚, 黄鹏程, 杨威, 等. 好氧颗粒污泥处理高盐榨菜废水除污特性研究[J]. 工业水处理, 2015, 35(11): 29-32.
[21] HOU M, LI W, LI H, et al. Performance and bacterial characteristics of aerobic granular sludge in response to alternating salinity[J]. International Biodeterioration & Biodegradation, 2019, 142: 211-217.
[22] 赵锡锋, 李兴强, 李军. 好氧颗粒污泥技术中试研究及应用进展[J]. 中国给水排水, 2020, 36(8): 30-37.
[23] 王明阳, 曹素兰, 王孙艳, 等. 好氧颗粒污泥的工程应用及其研究进展[J]. 水处理技术, 2018, 44(11): 11-18.
[24] 王峰. 好氧颗粒污泥在污水处理中的研究进展[J]. 应用化工, 2016, 45(6): 1129-1133.
[25] 张传兵. 啤酒生产中部分工序产生的废水对污泥活性的影响研究[J]. 河南理工大学学报(自然科学版), 2020, 39(5): 68-72.
[26] 郭承元, 操家顺, 王耀增. 混合碳源的好氧颗粒污泥培养及微生物特性研究[J]. 中国给水排水, 2012, 28(21): 75-78.
[27] LIU Y, WOON K H, YANG S F, et al. Influence of phenol on cultures of acetate-fed aerobic granular sludge[J]. Letters in Applied Microbiology, 2010, 35(2): 162-165.
[28] DOBBELEERS T, DAENS D, MIELE S, et al. Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry[J]. Bioresource Technology, 2017, 226: 211-219.
[29] LIU Y L, KANG X R, LI X, et al. Performance of aerobic granular sludge in a sequencing batch bioreactor for slaughterhouse wastewater treatment[J]. Bioresource Technology, 2015, 190: 487-491.
[30] IONESCU I A, BUMBAC C, CORNEA P. Formation of aerobic granules in sequencing batch reactor SBR treating dairy industry wastewater[J]. Scientific Bulletin. Series F. Biotechnologies, 2015, 19: 235-238.
[31] 刘头水. 基于以Fe(OH)3絮体为晶核的好氧颗粒污泥的培养及脱氮性能研究[D]. 衡阳:东华大学, 2018.
[32] SAJJAD M, KIM K S. Studies on the interactions of Ca2+ and Mg2+ with EPS and their role in determining the physicochemical characteristics of granular sludges in SBR system[J]. Process Biochemistry, 2015, 50(6): 966-972.
[33] 李洋媚. 铝盐在好氧污泥颗粒化过程中的强化作用及其分布特征[D]. 西安:西安建筑科技大学, 2017.
[34] 周橄, 郑晓英, 周翔, 等. CuO NPs对好氧颗粒污泥形成的影响研究[J]. 应用化工, 2018, 47(8): 1581-1586, 1599.
[35] 李娟英, 赵庆祥, 王静, 等. 重金属对活性污泥微生物毒性的比较研究[J]. 环境污染与防治, 2009, 31(11): 17-20, 25.
[36] 张春晖, 鲁文静, 苏长罗, 等. Ni2+对好氧颗粒污泥系统性能的影响[J]. 中国环境科学, 2020, 40(11): 4721-4727.
[37] 陈颖, 陈垚, 李聪, 等. 好氧颗粒污泥结构特点及稳定性研究进展[J]. 工业水处理, 2021, 41(10): 28-35.
[38] 陆佳, 刘永军, 刘喆, 等. 有机负荷对污泥胞外聚合物分泌特性及颗粒形成的影响[J]. 化工进展, 2018, 37(4): 1616-1622.
[39] YANG G J, LI X M, YANG Q, et al. Formation and characteristics of aerobic granular sludge for simultaneous phosphorus and nitrogen removal in a SBR[J]. Advanced Materials Research, 2011, 356/360: 1630-1636.
[40] AWANG N A, SHAABAN M G. Effect of reactor height/diameter ratio and organic loading rate on formation of aerobic granular sludge in sewage treatment[J]. International Biodeterioration & Biodegradation, 2016, 112: 1-11.
[41] JI B, CHEN W, FAN J, et al. Research progress on microbes in aerobic granular sludge[J]. Chinese Science Bulletin, 2017, 62(23): 2639-2648.
[42] XUE Y Q, GUO J B, LIAN J, et al. Effects of a higher hydraulic shear force on denitrification granulation in upflow anoxic sludge blanket reactors[J]. Biochemical Engineerirg Journal, 2016, 105(Part A): 136-143.
[43] 王陆玺, 周楠, 王晨旭, 等. 流体流速对好氧颗粒污泥快速培养的影响[J]. 中国环境科学, 2018, 38(6): 2090-2096.
[44] BINDHU B K, MADHU G. Influence of three selection pressures on aerobic granulation in sequencing batch reactor[J]. Indian Journal of Chemical Technology, 2015, 22(5): 241-247.
[45] ZHAO Q, LIU Q X, ZOU X. Research on aerobic granular sludge cultivated under selective pressure[J]. Advanced Materials Research, 2014, 1004/1005: 908-913.
[46] 杨月乔, 刘永军, 王晓慧, 等. 强化造粒初期SBR沉淀时间对颗粒污泥形成的影响[J]. 中国给水排水, 2016, 32(7): 36-39.
[47] AWANG N A, SHAABAN M G. The impact of reactor height/diameter (H/D) ratio on aerobic granular sludge (AGS) formation in sewage[J]. Journal Teknologi, 2015, 77(32): 95-103.
[48] 唐堂, 王硕, 王玉莹, 等. SBR不同沉降时间的污泥特性研究[J]. 中国给水排水, 2018, 34(3): 85-90.
[49] 曲新月, 范文雯, 袁林江, 等. 水平搅拌下低高径比SBR中好氧活性污泥的颗粒化[J]. 中国环境科学, 2018, 38(9): 3358-3366.
[50] VAN LOOSDRECHT M C M, BRDJANOVIC D. Water treatment. Anticipating the next century of wastewater treatment[J]. Science, 2014, 344(6191): 1452-1453.
[51] 吴昌永, 王然登, 彭永臻. 污水处理颗粒污泥技术原理与应用[M]. 北京: 中国建筑工业出版社, 2011.
[52] 李冬, 王樱桥, 张杰, 等. 高径比对生活污水好氧颗粒污泥系统的影响[J]. 中国环境科学, 2019, 39(1): 141-148.
[53] JALALI S, SHAYEGAN J, REZASOLTANI S. Rapid start-up and improvement of granulation in SBR[J]. Journal of Environmental Health Science & Engineering, 2015, 13: 36.
[54] NANCHARAIAH Y V, REDDY K K. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2018, 247: 1128-1143.
[55] 罗应东. 污泥颗粒化过程及曝气条件对好氧颗粒的影响研究[D]. 武汉: 华中科技大学, 2011.
[56] 赵珏, 程媛媛, 宣鑫鹏, 等. 曝气深度对好氧颗粒污泥稳定性的影响[J]. 化工进展, 2018, 37(4): 1623-1630.
[57] 尹志文. 菌丝球促进好氧污泥快速颗粒化的研究[D]. 沈阳:沈阳大学, 2019.
[58] DE SOUSA ROLLEMBERG S L, MENDES BARROS A R, MILEN FIRMINO P I, et al. Aerobic granular sludge: cultivation parameters and removal mechanisms[J]. Bioresource Technology, 2018, 270: 678-688.
[59] 冯殿宝, 王维红, 王燕杉, 等. 以黏土为载体的好氧颗粒污泥培养及其对番茄废水的处理[J]. 应用与环境生物学报, 2019, 25(1): 199-205.
[60] 伍昌年, 凌琪, 唐玉朝, 等. 改性粉煤灰强化SBR工艺处理污水实验研究[J]. 应用化工, 2017, 46(6): 1071-1073, 1077.
[61] 王磊, 湛含辉, 王晴晴, 等. 好氧颗粒污泥快速培养影响参数及方法研究进展[J]. 环境工程, 2020, 38(5): 1-7, 29.
[62] ADAV S S, LEE D J, LAI J Y. Aerobic granulation in sequencing batch reactors at different settling times[J]. Bioresource Technology, 2009, 100(21): 5359-5361.
[63] 张新喜, 完颜健飞, 胡小兵, 等. 基于活性污泥絮体微观参数的污泥沉降性能判别[J]. 环境科学学报, 2015, 35(12): 3815-3823.
[64] 杨雄, 彭永臻, 郭建华, 等. 氮/磷缺乏对污泥沉降性能及丝状菌生长的影响[J]. 化工学报, 2014, 65(3): 1040-1048.
[65] 袁莎莎. 好氧颗粒污泥形成、解体及储存过程研究[D]. 济南: 山东大学, 2017.
[66] 蒋勗欣, 李军, 马挺, 等. 好氧污泥颗粒化中胞外聚合物(EPS)的动态变化[J]. 环境科学学报, 2014, 34(5): 1192-1198.
[67] 张云霞, 季民, 李超, 等. 好氧颗粒污泥胞外聚合物(EPS)的生化性研究[J]. 环境科学, 2008, 29(11): 3124-3127.
[68] 朱珂辰. 以比耗氧速率预警丝状菌膨胀的研究与应用[D]. 西安: 西安建筑科技大学, 2015.
[69] 唐琳钦, 王安柳, 宿程远, 等. 不同氮源对好氧颗粒污泥理化特性及微生物群落影响[J]. 广西师范大学学报(自然科学版), 2021, 39(2): 144-153.
[70] 王燕杉. 好氧颗粒污泥处理番茄酱生产废水及微生物群落演替[D]. 乌鲁木齐: 新疆农业大学, 2018.
[71] HE Q L, ZHOU J, WANG H Y, et al. Microbial population dynamics during sludge granulation in an A/O/A sequencing batch reactor[J]. Bioresource Technology, 2016, 214: 1-8.
[72] LIU L, YOU Q Y, GIBSON V, et al. Treatment of swine wastewater in aerobic granular reactors: comparison of different seed granules as factors[J]. Frontiers of Environmental Science and Engineering, 2015, 9(6): 1139-1148.
[73] LIU X D, CHEN Y, ZHANG X, et al. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater[J]. Journal of Hazardous Materials, 2015, 295: 153-160.
[74] CAI F R, LEI L R, LI Y M, et al. A review of aerobic granular sludge(AGS) treating recalcitrant wastewater: refractory organics removal mechanism, application and prospect[J]. Science of the Total Environment, 2021, 782: 146852.
[75] 李黔花, 李志华, 岳秀, 等. 好氧颗粒污泥处理印染废水的效能及其微生物特征[J]. 工业水处理, 2020, 40(3): 43-48.
[76] 林兵. 盐胁迫下好氧颗粒污泥微生物种群变化及生态响应机制[D]. 镇江: 江苏科技大学, 2014.
[77] 侯爱月, 李军, 王昌稳, 等. 不同好氧颗粒污泥中微生物群落结构特点[J]. 中国环境科学, 2016, 36(4): 1136-1144.
[78] 方芳, 朱润晔, 张丽丽, 等. 好氧颗粒污泥共代谢降解MTBE及微生物群落研究[J]. 环境科学学报, 2008, 28(11): 2206-2212.
[79] DUQUE A F, BESSA V S, CASTRO P M L. Characterization of the bacterial communities of aerobic granules in a 2-fluorophenol degrading process[J]. Biotechnology Reports, 2015, 5: 98-104.
[80] 李建婷, 纪树兰, 刘志培, 等. 16S rDNA克隆文库方法分析好氧颗粒污泥细菌组成[J]. 环境科学研究, 2009, 22(10): 1218-1223.
[81] 黄国富, 王成端. 2种反应器中好氧颗粒污泥培养的比较研究[J]. 环境污染与防治, 2009, 31(4): 48-52.
[82] 蒋俊令. 好氧颗粒污泥降解2, 4-二氯酚的研究[D]. 济南: 山东师范大学, 2014.
[83] ABDULLAH N, UJANG Z, YAHYA A. Aerobic granular sludge formation for high strength agro-based wastewater treatment[J]. Bioresource Technology, 2011, 102(12): 6778-6781.
[84] NAVARRO R R, HORI T, SATO Y, et al. High susceptibility of aerobic microbiota in membrane bioreactor (MBR) sludge towards olive oil as revealed by high-throughput sequencing of 16S rRNA genes[J]. Journal of Environmental Chemical Engineering, 2016, 4(4): 4392-4399.
[85] 王维红, 王燕杉, 郑晓英, 等. 长时间低温储存好氧颗粒污泥的再生研究[J]. 水处理技术, 2020, 46(10): 33-38.
[86] 马登月. 好氧颗粒污泥对两种典型染料处理作用的机制研究[D]. 济南: 山东大学, 2014.
[87] FRANCA R D G, PINHEIRO H M, LOURENO N D. Recent developments in textile wastewater biotreatment: dye metabolite fate, aerobic granular sludge systems and engineered nanoparticles[J]. Reviews in Environmental Science and Biotechnology, 2020, 19: 149-190.
[88] LOTITO A M, FRATINO U, MANCINI A, et al. Effective aerobic granular sludge treatment of a real dyeing textile wastewater[J]. International Biodeterioration and Biodegradation, 2012, 69: 62-68.
[89] 范骏洋, 张善林, 邹海晴, 等. 乳品废水厌氧反应器快速启动及颗粒污泥形成[J]. 工业水处理, 2020, 40(11): 66-69.
[90] 张志. 运行条件对好氧颗粒污泥处理乳品废水的影响[J]. 内蒙古水利, 2015(6): 188-189.
[91] WICHERN M, LÜBKEN M, HORN H. Optimizing sequencing batch reactor(SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge[J]. Water Science and Technology, 2008, 58(6): 1199-1206.
[92] BUMBAC C, IONESCU I A, TIRON O, et al. Continuous flow aerobic granular sludge reactor for dairy wastewater treatment[J]. Water Science and Technology, 2015, 71(3): 440-445.
[93] 刘前进, 刘立凡. 室温下苯酚溶液浓度对好氧颗粒污泥储存稳定性的影响[J]. 中国环境科学, 2021, 41(12):5620-5626.
[94] 刘国洋, 赵白航, 李军, 等. 好氧颗粒污泥降解苯酚[J]. 环境工程学报, 2014, 8(9): 3645-3650.
[95] 万小平. 环境相关浓度磺胺嘧啶对好氧颗粒污泥的影响及其去除机制[D]. 济南: 山东大学, 2018.
[96] 项正心, 张丽丽, 陈建孟. 好氧颗粒污泥降解甲基叔丁醚的实验研究[J]. 环境污染与防治, 2008, 30(11): 66-69, 74.
[97] 方芳. 降解MTBE好氧颗粒污泥的培养及微生物群落结构研究[D]. 杭州: 浙江工业大学, 2008.
[98] 陈丁丁. 毒性抑制下好氧颗粒污泥的响应研究[D]. 合肥: 合肥工业大学, 2017.
[99] 田世烜, 张萌, 陈亮, 等. 3种污泥对磺胺二甲基嘧啶的吸附性能[J]. 环境工程学报, 2012, 6(3): 1020-1024.
[100] 魏永军. 工业废水中有机毒物治理技术的初步研究及其应用[D]. 南京: 南京理工大学, 2012.
[101] 马春, 李玲, 俞津津, 等. 好氧颗粒污泥的应用[J]. 化工进展, 2011, 30(6): 1369-1373.
[102] 江孟, 胡学伟, TRUNG N D, 等. 好氧颗粒污泥对Pb2+、Cu2+、Cd2+的吸附[J]. 水处理技术, 2013, 39(2): 53-56.
[103] 马明海, 彭书传, 徐圣友, 等. 重金属对好氧颗粒污泥性能的影响[J]. 环境科学与技术, 2011, 34(2): 159-161.
[104] 李姝, 胡学伟, TRUNG N D, 等. 干燥好氧颗粒污泥对重金属的吸附研究[J]. 工业水处理, 2013, 33(10): 40-43.
[105] WANG X L, LI Y, HUANG J, et al. Efficiency and mechanism of sorption of low concentration uranium in water by powdery aerobic activated sludge[J]. Ecotoxicology and Environmental Safety, 2019, 180: 483-490.
[106] 郭栋清, 李静, 张利波, 等. 核工业含铀废水处理技术进展[J]. 工业水处理, 2019, 39(1): 14-20.
[107] MARTINS M, FALEIRO M L, CHAVES S, et al. Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure[J]. Journal of Hazardous Materials, 2010, 176(1/3): 1065-1072.
[108] 苑士超, 谢水波, 李仕友, 等. 厌氧活性污泥处理废水中的U(Ⅵ)[J]. 环境工程学报, 2013, 7(6): 2081-2086.
[1] TANG Linqin, WANG Anliu, SU Chengyuan, DENG Xue, ZHAO Lijian, XIAN Yunchuan, CHEN Yu. Effects of Different Nitrogen Sources on Physicochemical Properties andMicrobial Community of Aerobic Granular Sludge [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 144-153.
[2] SU Lei, LI Junying. Discussion on Classification Standard of Eco-environment Quality in Counties of National Key Eco-functional Areas [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 196-202.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .