Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (2): 15-26.doi: 10.16088/j.issn.1001-6600.2021020301

Previous Articles     Next Articles

Multi-scale Prediction of Expressways' Arrival Volume of Large and Medium-sized Trucks Based on System Relevance

LIN Peiqun1*, HE Huohua1, LIN Xukun2   

  1. 1. School of Civil and Transportation, South China University of Technology, Guangzhou Guangdong 510641, China;
    2. Department of Transportation of Guangdong Province, Guangzhou Guangdong 510101, China
  • Received:2021-02-03 Revised:2021-03-23 Published:2022-05-31

Abstract: In recent years, the proportion of large and medium-sized trucks in the traffic flow has gradually increased, and the impact on urban traffic is increasing day by day. Accurate and timely prediction of the arrival of large and medium-sized trucks is of great significance to accurate urban traffic control. To solve this problem, a multi-scale prediction method for the arrival volume of large and medium-sized trucks on expressway based on the system correlation is proposed: the spatio-temporal correlation of the flow of large and medium-sized trucks at the entrance and exit of expressway toll stations is analyzed, and a neural network model is constructed to learn the spatial weight and time weight. In each step of time, the input is fused with spatial weight and time weight, and the offset term is set to obtain the prediction result of the time step after correction.The final prediction result is obtained by summing the prediction results of each step of time. The experimental results show that the prediction accuracy of the method is 90.92%, 92.48% and 94.33% respectively at the time scales of 15, 30 and 60 mins, which is better than other models, and the practicability and effectiveness are guaranteed.

Key words: traffic flow prediction, system relevance, neural networks, expressways, large and medium-sized trucks volume

CLC Number: 

  • U491
[1] 美国交通研究委员会. 道路通行能力手册[M]. 任福田, 刘小明, 荣建, 等译. 北京: 人民交通出版社, 2007: 56-150.
[2] 刘欣, 王洪涛, 林洋. 交通量预测研究方法评述[J]. 吉林建筑工程学院学报, 2009, 26(4): 35-38. DOI: 10.3969/j.issn.1009-0185.2009.04.010.
[3] 唐秋生,王川. 基于云遗传算法优化BP神经网络的轨道客流预测[J]. 桂林理工大学学报,2021,41(2):403-408.
[4] 刘铭, 鱼昕. 基于改进LSTM算法的短时交通流量预测[J]. 桂林理工大学学报, 2021, 41(2):409-414.
[5] 林培群, 陈丽甜, 雷永巍. 基于K近邻模式匹配的地铁客流量短时预测[J]. 华南理工大学学报(自然科学版), 2018, 46(1): 50-57. DOI: 103969/jissn1000-565X201801007.
[6] ZHENG Z D, SU D C. Short-term traffic volume forecasting: A k-nearest neighbor approach enhanced by constrained linearly sewing principle component algorithm[J]. Transportation Research Part C: Emerging Technologies, 2014, 43(Part 1): 143-157. DOI: 10.1016/j.trc.2014.02.009.
[7] CHENG S F, LU F, PENG P, et al. Short-term traffic forecasting: An adaptive ST-KNN model that considers spatial heterogeneity[J]. Computers, Environment and Urban Systems, 2018, 71: 186-198. DOI: 10.1016/j.compenvurbsys.2018.05.009.
[8] HABTEMICHAEL F G, CETIN M. Short-term traffic flow rate forecasting based on identifying similar traffic patterns[J]. Transportation Research Part C: Emerging Technologies, 2016, 66: 61-78. DOI: 10.1016/j.trc.2015.08.017.
[9] WILLIAMS B M, HOEL L A. Modeling and forecasting vehicular traffic flow as a seasonal ARIMA process: Theoretical basis and empirical results[J]. Journal of Transportation Engineering, 2003, 129(6):664-672. DOI: 10.1061/(ASCE)0733-947X(2003)129: 6(664).
[10] VAN DER VOORT M, DOUGHERTY M, WATSON S. Combining Kohonen maps with ARIMA time series models to forecast traffic flow[J]. Transportation Research Part C: Emerging Technologies, 1996, 4(5): 307-318. DOI: 10.1016/S0968-090X(97)82903-8.
[11] SMITH B L, WILLIAMS B M, OSWALD R K. Comparison of parametric and nonparametric models for traffic flow forecasting[J]. Transportation Research Part C: Emerging Technologies, 2002, 10(4): 303-321. DOI: 10.1016/S0968-090X(02)00009-8.
[12] JEONG Y S, BYON Y J, CASTRO-NETO M M, et al. Supervised weighting-online learning algorithm for short-term traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(4): 1700-1707. DOI: 10.1109/TITS.2013.2267735.
[13] 徐永俊. 基于混沌和SVR的短时交通流预测方法研究[D]. 成都: 西南交通大学, 2011.
[14] 刘剑, 刘丽华, 赵悦. 基于KPCA与SVM的混合核交通流数据检测[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(5): 921-928. DOI: 10.11717/j.issn:2095-1922.2018.05.19.
[15] 谈苗苗. 基于LSTM和灰色模型集成的短期交通流预测[D]. 南京: 南京邮电大学, 2017.
[16] 王嘉琪. 基于CNN和LSTM的城市区域交通流量预测[D]. 大连: 大连理工大学, 2019.
[17] ZHANG D, KABULA M R. Combining weather condition data to predict traffic flow: a GRU-based deep learning approach[J]. IET Intelligent Transport Systems, 2018, 12(7): 578-585. DOI: 10.1049/iet-its.2017.0313.
[18] 于德新, 邱实, 周户星, 等. 基于GRU-RNN模型的交叉口短时交通流预测研究[J]. 公路工程, 2020, 45(4): 109-114. DOI: 10.19782/j.cnki.1674-0610.2020.04.018.
[19] 李朝阳, 李琳, 陶晓辉. 面向动态交通流预测的双流图卷积网络[EB/OL]. (2020-11-06)[2021-03-23]. http://kns.cnki.net/kcms/detail/11.5602.TP.20201105.1009.008.html.
[20] LV M Q, HONG Z X, CHEN L, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. DOI: 10.1109/TITS.2020.2983763.
[21] GUO K, HU Y L, QIAN Z, et al. Dynamic graph convolution network for traffic forecasting based on latent network of Laplace matrix estimation[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1009-1018. DOI: 10.1109/TITS.2020.3019497.
[22] 黄子敬. 基于时空注意力机制的高速公路多收费站多时段出口流量预测方法研究[D]. 广州: 华南理工大学, 2020.
[23] COHEN J, COHEN P, WEST S G, et al. Applied multiple regression/correlation analysis for the behavioral sciences[M]. 3rd ed. London: Routledge, 2013: 52-138.
[24] 扬波尔斯基 A P. 双曲函数[M]. 邢富冲, 译. 北京: 中央民族学院出版社, 1987: 23-96.
[25] NAIR V, HINTON G E. Rectified linear units improve restricted Boltzmann machines[C]// Proceedings of the 27th International Conference on Machine Learning. NY, New York: Association for Computing Machinery, 2010: 807-814.
[26] ANDERSEN L N, LARSEN J, HANSEN L K, et al. Adaptive regularization of neural classifiers[C]// Neural Netwrorks for Signal Processing VII: Proceedings of the 1997 IEEE Signal Processing Society Workshop. Piscataway, NJ: IEEE, 1997: 24-33. DOI: 10.1109/NNSP.1997.622380.
[27] 袁华, 陈泽濠. 基于时间卷积神经网络的短时交通流预测算法[J]. 华南理工大学学报(自然科学版), 2020, 48(11): 107-113, 122.
[28] 贾俊平, 何晓群, 金勇进. 统计学[M]. 4版. 北京: 中国人民大学出版社, 2009: 1-165.
[29] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolutional networks: A deep learning framework for traffic forecasting[C]// Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence. California: International Joint Conferences on Artificial Intelligence Organization, 2018: 3634-3640. DOI: 10.24963/ijcai.2018/505.
[30] BAI L, YAO L N, LI C, et al. Adaptive graph convolutional recurrent network for traffic forecasting[EB/OL]. (2020-07-06)[2021-03-23]. https://arxiv.org/pdf/2007.02842v1.pdf.
[1] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[2] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[3] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[4] XU Lun-hui, YOU Huang-yang. Short-term Traffic Flow Forecasting Based on Analysis of Characteristics and Impact Factors [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(1): 1-5.
[5] LI Peng. Load Localization of Optical Fiber Smart Structures Based on Probabilistic Neural Networks [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 223-226.
[6] ZHAO Hui-wei, LI Wen-hua, FENG Chun-hua, LUO Xiao-shu. Periodic Oscillation Analysis for a Recurrent Neural NetworksModel with Time Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HU Jinming, WEI Duqu. Hybrid Projective Synchronization of Fractional-order PMSM with Different Orders[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 1 -8 .
[2] WU Kangkang, ZHOU Peng, LU Ye, JIANG Dan, YAN Jianghong, QIAN Zhengcheng, GONG Chuang. FIR Equalizer Based on Mini-batch Gradient Descent Method[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 9 -20 .
[3] LIU Dong, ZHOU Li, ZHENG Xiaoliang. A Very Short-term Electric Load Forecasting Based on SA-DBN[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 21 -33 .
[4] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34 -46 .
[5] WANG Jinyan, HU Chun, GAO Jian. An OBDD Construction Method for Knowledge Compilation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 47 -54 .
[6] LU Miao, HE Dengxu, QU Liangdong. Grey Wolf Optimization Algorithm Based on Elite Learning for Nonlinear Parameters[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 55 -67 .
[7] LI Lili, ZHANG Xingfa, LI Yuan, DENG Chunliang. Daily GARCH Model Estimation Using High Frequency Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 68 -78 .
[8] LI Songtao, LI Qunhong, ZHANG Wen. Co-dimension-two Grazing Bifurcation and Chaos Control of Three-degree-of-freedom Vibro-impact Systems[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 79 -92 .
[9] ZHAO Hongtao, LIU Zhiwei. Decompositions of λ-fold Complete Bipartite 3-uniform Hypergraphs λK(3)n,n into Hypergraph Triangular Bipyramid[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 93 -98 .
[10] LI Meng, CAO Qingxian, HU Baoqing. Spatial-temporal Analysis of Continental Coastline Migration from 1960 to 2018 in Guangxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 99 -108 .