Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 66-72.doi: 10.16088/j.issn.1001-6600.2017.02.010
Previous Articles Next Articles
HUANG Kaijiao, XIAO Feiyan*
CLC Number:
[1] HOLLING C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959,91(7): 385-398. DOI:10.4039/Ent91385-7. [2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975,44(1):331-340. DOI:10.2307/3866. [3] HWANG T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 395-401. DOI:10.1016/S0022-247X(02)00395-5. [4] XU Shenghu, L Weidong, LI Xiangfeng. Existence of global sulutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4):821-827. [5] 汪洋. 具有Beddington-DeAngelis功能反应随机捕食者-食模型种群动力学分析[D]. 哈尔滨:哈尔滨工业大学, 2011. [6] BAO Jianhai, MAO Xuerong, YIN G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(17): 6601-6616. DOI:10.1016/j.na.2011.06.043. [7] BAO Jianhai, YUAN Chenggui. Stochastic population dynamics driven by Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2012, 391(2): 363-375. DOI:10.1016/j.jmaa.2012.02.043. [8] MAO Xuerong. Stochastic differential equations and their application[M]. Chichester: Horwood Publishing Limited, 1997:51-59. [9] HWANG T W. Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 290(1): 113-122. DOI:10.1016/j.jmaa.2003.09.073. [10] MAO Xuerong, YUAN Chenggui, ZOU Jiezhong. Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1): 296-320. DOI:10.1016/j.jmaa.2004.09.027. [11] 王克. 随机生物数学模型[M]. 北京:科学出版社, 2010. |
[1] | LI Shuyi, WEI Yuming, PENG Huaqin. A Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 74-81. |
[2] | LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155. |
|