Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 66-72.doi: 10.16088/j.issn.1001-6600.2017.02.010

Previous Articles     Next Articles

A Stochastic Predator-prey System with Lévy Jumps

HUANG Kaijiao, XIAO Feiyan*   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541004, China
  • Online:2017-07-25 Published:2018-07-25

Abstract: In this paper, a stochastic Bedding-DeAngelis predator-prey system with Lévy jumps is investigated. Using the construction of Lyapunov functions and stopping time technique, the existence of global unique positive solution is obtained. Based on that, by constructing some functions, it is shown that the solution of the system is stochastically ultimate bounded. Finally, some sufficient conditions of extinction are established.

Key words: Beddington-DeAngelis predator-prey model, Lévy jumps, extinction

CLC Number: 

  • O175
[1] HOLLING C S. Some characteristics of simple types of predation and parasitism[J]. The Canadian Entomologist, 1959,91(7): 385-398. DOI:10.4039/Ent91385-7.
[2] BEDDINGTON J R. Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology, 1975,44(1):331-340. DOI:10.2307/3866.
[3] HWANG T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2003, 281(1): 395-401. DOI:10.1016/S0022-247X(02)00395-5.
[4] XU Shenghu, L Weidong, LI Xiangfeng. Existence of global sulutions for a prey-predator model with Beddington-DeAngelis functional response and cross-diffusion[J]. Mathematica Applicata, 2009, 22(4):821-827.
[5] 汪洋. 具有Beddington-DeAngelis功能反应随机捕食者-食模型种群动力学分析[D]. 哈尔滨:哈尔滨工业大学, 2011.
[6] BAO Jianhai, MAO Xuerong, YIN G, et al. Competitive Lotka-Volterra population dynamics with jumps[J]. Nonlinear Analysis: Theory, Methods & Applications, 2011, 74(17): 6601-6616. DOI:10.1016/j.na.2011.06.043.
[7] BAO Jianhai, YUAN Chenggui. Stochastic population dynamics driven by Lévy noise[J]. Journal of Mathematical Analysis and Applications, 2012, 391(2): 363-375. DOI:10.1016/j.jmaa.2012.02.043.
[8] MAO Xuerong. Stochastic differential equations and their application[M]. Chichester: Horwood Publishing Limited, 1997:51-59.
[9] HWANG T W. Uniqueness of limit cycles of the predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 290(1): 113-122. DOI:10.1016/j.jmaa.2003.09.073.
[10] MAO Xuerong, YUAN Chenggui, ZOU Jiezhong. Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications, 2005, 304(1): 296-320. DOI:10.1016/j.jmaa.2004.09.027.
[11] 王克. 随机生物数学模型[M]. 北京:科学出版社, 2010.
[1] LI Shuyi, WEI Yuming, PENG Huaqin. A Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 74-81.
[2] LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!