Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (4): 74-81.doi: 10.16088/j.issn.1001-6600.2020.04.009
Previous Articles Next Articles
LI Shuyi, WEI Yuming*, PENG Huaqin
CLC Number:
[1] 启军, 陈越, 杜生明. 论传染病的危害及我国的防治策略[J].中国基础科学,2005,7(6): 21-32.DOI:10.3969/j.issn.1009-2412.2005.06.005. [2] HETHCOTE H W. The mathematics of infectious diseases[J].SIAM Review,2000,42(4): 599-653.DOI:10.1137/S0036144500371907. [3] BRAUER F, CASTILLO-CHAVEZ C. Mathematical models in population biology and epidemiology[M].2nd ed. New York: Springerr-Verlag,2012.DOI: 10.1007/978-1-4614-1686-9. [4] CAI Y, WANG W M. Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion[J].Nonlinear Analysis:Real World Applications,2016,30:99-125.DOI:10.1016/j.nonrwa.2015.12.002. [5] GAO S J, TENG Z D, XIE D H. Analysis of a delayed SIR epidemic model with pulse vaccination[J].Chaos, Solitons & Fractals,2009,40(2): 1004-1011.DOI: 10.1016/j.chaos.2007.08.056. [6] FRANCESCHETTI A, PUGLIESE A. Threshold behaviour of a SIR epidemic model with age structure and immigration[J].Journal of Mathematical Biology,2008,57(1):1-27.DOI: 10.1007/s00285-007-0143-1. [7] LIN Y G, JIANG D Q. Threshold behavior in a stochastic SIS epidemic model with standard incidence[J].Journal of Dynamics Differential Equations,2014,26(4): 1079-1094.DOI: 10.1007/s10884-014-9408-8. [8] LI M Y, MULDOWNEY J S. Global stability for the SEIR model in epidemiology[J].Mathematics Biosciences,1995,125(2): 155-164.DOI:10.1016/0025-5564(95)92756-5. [9] LI K Z, XU Z P, ZHU G H. Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness[J].Chinese Physics B, 2014,23(11): 118904.DOI: 10.1088/1674-1056/23/11/118904. [10]LI M Y, MULDOWNEY J S. A geometric approach to the global stability problems[J].SIAM Journal on Mathematical Analysis,1996,27(4): 1070-1083.DOI:10.1137/s0036141094266449. [11]NEAL P. The SIS great circle epidemic model[J].Journal of Applied Probability, 2008,45(2): 513-530.DOI:10.1017/S0021900200004393. [12]LI M Y, GRAEF J R, WANG L C. Global dynamics of an SEIR model with varying total population size[J].Mathematics Biosciences,1999,160(2): 191-213.DOI:10.1016/S0025-5564(99)00030-9. [13]周艳丽,张卫国. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J].山东大学学报(理学版),2013,48(10): 68-77.DOI:10.6040/j.issn.1671-9352.0.2013.041. [14]CAI Y L, JIAO J J, GUI Z J. Environmental variability in a stochastic epidemic model[J].Applied Mathematics and Computation,2018,329: 210-226.DOI:10.1016/j.amc.2018.02.009. [15]ZHAO Y, YUAN S, MA J. Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment[J].Bulletin of Mathematical Biology,2015,77(7): 1285-1326.DOI: 10.1007/s11538-015-0086-4. [16]ALLEN E. Environmental variability and mean-reverting processes[J].Discrete and Continuous Dynamical Systems:Series B,2017,21(7): 2073-2089.DOI:10.1142/S0219525900000224. [17]DUFFIE D. Dynamic asset pricing theory[M].Princeton,New Jersey: Princeton University Press, 1996. [18]WU F, MAO X R, CHEN K. A highly sensitive mean-reverting process in finance and the Euler-Maruyama approximations[J].Journal of Mathematical Analysis and Applications,2008,348(1): 540-554.DOI:10.1016/j.jmaa.2008.07.069. [19]TROST D C, LI E A O, OSTROFF J H, et al. A model for liver homeostasis using modified mean-reverting Ornstein-Uhlenbeck process[J].Computational and Mathematical Methods in Medicine,2010,11(1): 27-47.DOI: 10.1080/17486700802653925. [20]ANTOSHIN S. Investment under uncertainty[J].Econometrica,1971,39(5):659-681.DOI:10.2307/1909571. |
[1] | LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155. |
[2] | XING Wei,GAO Jinfang,YAN Qisheng,ZHOU Qihua. An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 58-65. |
[3] | HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72. |
[4] | HU Hua. Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 84-92. |
|