Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 58-65.doi: 10.16088/j.issn.1001-6600.2017.02.009
Previous Articles Next Articles
XING Wei1,GAO Jinfang2,YAN Qisheng1*,ZHOU Qihua1
CLC Number:
[1] TIAN Yanni, LIU Xianning.Global dynamics of a virus dynamical model with general incidence rate and cure rate[J].Nonlinear Analysis: Real World Applications 2014,16:17-26. DOI:10.1016/j.nonrwa.2013.09.002. [2] MENG Xinzhu,CHEN Lansun. Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J].Taiwanese Journal of Mathematics,2008,12(5):1107-1122. [3] MENG Xinzhu,CHEN Lansun.The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J]. Applied Mathematics and Computation,2008,197(2):582-597. DOI:10.1016/j.amc.2007.07.083. [4] 赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J].应用数学,2009,22(3):676-682. [5] 宋燕,刘薇,张宇.具有垂直传染及脉冲免疫接种的SIQR传染病模型[J].兰州大学学报(自然科学版),2014,50(2):251-254. DOI:10.13885/j.issn.0455-2059.2014.02.002. [6] 靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243. [7] 邢伟,颜七笙,杨志辉,等.一类具有非线性传染率的SEIS传染病模型的稳定性分析[J].应用数学和力学,2016,37(11):1247-1254. DOI:10.21656/1000-0887.370166. [8] Van den DRIESSCHE P,WATMOUGH J.A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology,2000,40(6):525-540. DOI:10.1007/s002850000032. [9] Van den DRIESSCHE P,WATMOUGH J.Epidemic solutions and endemic and endemic catastrophes[M]// RUAN Shigui, WOLKOWICZ G S K, WU Jianhong. Dynamical System and Their Application in Biology: Fields Institute Communications Volume 36. Providence, RI:AMS, 2003:247-257. [10] ALEXANDER M E,MOGHADAS S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75-96. DOI:10.1016/j.mbs.2004.01.003. [11] 肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012:225-240. |
No related articles found! |
|