Journal of Guangxi Normal University(Natural Science Edition) ›› 2017, Vol. 35 ›› Issue (2): 58-65.doi: 10.16088/j.issn.1001-6600.2017.02.009

Previous Articles     Next Articles

An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination

XING Wei1,GAO Jinfang2,YAN Qisheng1*,ZHOU Qihua1   

  1. 1.School of Science,East China University of Technology,Nanchang Jiangxi 330013,China;
    2.Institute of Technology,East China Jiaotong University,Nanchang Jiangxi 330013,China
  • Online:2017-07-25 Published:2018-07-25

Abstract: An SIQR epidemic model with vertical transmission and impulsive vaccination is investigated in this paper. Nonlinear infection rate of βI(t)(1+vI(t))S(t) is used and the threshold of disease popularity is obtained. The Floquet theorem and the comparison theorem are used to prove the existence and globally asymptotical stability of the disease-free periodic solution. Sufficient conditions for the uniform persistence of the system are obtained in the end.The results show that when the parameters satisfy some conditions, the disease does not perish.At the same time, the knowledge of dynamics of infectious diseases is enriched.

Key words: nonlinear incidence rate, SIQR model, globally asymptotical stability, uniform persistence

CLC Number: 

  • O175.14
[1] TIAN Yanni, LIU Xianning.Global dynamics of a virus dynamical model with general incidence rate and cure rate[J].Nonlinear Analysis: Real World Applications 2014,16:17-26. DOI:10.1016/j.nonrwa.2013.09.002.
[2] MENG Xinzhu,CHEN Lansun. Global dynamical behaviors for an SIR epidemic model with time delay and pulse vaccination[J].Taiwanese Journal of Mathematics,2008,12(5):1107-1122.
[3] MENG Xinzhu,CHEN Lansun.The dynamics of a new SIR epidemic model concerning pulse vaccination strategy[J]. Applied Mathematics and Computation,2008,197(2):582-597. DOI:10.1016/j.amc.2007.07.083.
[4] 赵文才,孟新柱.具有垂直传染的SIR脉冲预防接种模型[J].应用数学,2009,22(3):676-682.
[5] 宋燕,刘薇,张宇.具有垂直传染及脉冲免疫接种的SIQR传染病模型[J].兰州大学学报(自然科学版),2014,50(2):251-254. DOI:10.13885/j.issn.0455-2059.2014.02.002.
[6] 靳祯,马知恩.具有连续和脉冲预防接种的SIRS传染病模型[J].华北工学院学报,2003,24(4):235-243.
[7] 邢伟,颜七笙,杨志辉,等.一类具有非线性传染率的SEIS传染病模型的稳定性分析[J].应用数学和力学,2016,37(11):1247-1254. DOI:10.21656/1000-0887.370166.
[8] Van den DRIESSCHE P,WATMOUGH J.A simple SIS epidemic model with a backward bifurcation[J]. Journal of Mathematical Biology,2000,40(6):525-540. DOI:10.1007/s002850000032.
[9] Van den DRIESSCHE P,WATMOUGH J.Epidemic solutions and endemic and endemic catastrophes[M]// RUAN Shigui, WOLKOWICZ G S K, WU Jianhong. Dynamical System and Their Application in Biology: Fields Institute Communications Volume 36. Providence, RI:AMS, 2003:247-257.
[10] ALEXANDER M E,MOGHADAS S M. Periodicity in an epidemic model with a generalized non-linear incidence[J]. Mathematical Biosciences, 2004, 189(1):75-96. DOI:10.1016/j.mbs.2004.01.003.
[11] 肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2012:225-240.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!