Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (4): 74-81.doi: 10.16088/j.issn.1001-6600.2020.04.009

Previous Articles     Next Articles

A Stochastic SIS Epidemic Model with Ornstein-Uhlenbeck Process

LI Shuyi, WEI Yuming*, PENG Huaqin   

  1. College of Mathematics and Statistics, Guangxi Normal University, Guilin Guangxi 541006, China
  • Received:2019-02-27 Published:2020-07-13

Abstract: A class of stochastic SIS epidemic model incorporating mean-reverting Ornstein-Uhlenbeck process is investigated. Sufficient conditions for the extinction and permanence of the system are established. The threshold which determines the disease will die out or not is obtained. When Rs0<1, the disease will extinct. While when Rs0>1, the disease will persist. It is found that smaller speed of reversion or bigger intensity of volatility can suppress the disease outbreak. The conclusions are simulated through the numerical method.

Key words: Ornstein-Uhlenbeck process, basic reproduction number, extinction, persistence

CLC Number: 

  • O211.63
[1] 启军, 陈越, 杜生明. 论传染病的危害及我国的防治策略[J].中国基础科学,2005,7(6): 21-32.DOI:10.3969/j.issn.1009-2412.2005.06.005.
[2] HETHCOTE H W. The mathematics of infectious diseases[J].SIAM Review,2000,42(4): 599-653.DOI:10.1137/S0036144500371907.
[3] BRAUER F, CASTILLO-CHAVEZ C. Mathematical models in population biology and epidemiology[M].2nd ed. New York: Springerr-Verlag,2012.DOI: 10.1007/978-1-4614-1686-9.
[4] CAI Y, WANG W M. Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion[J].Nonlinear Analysis:Real World Applications,2016,30:99-125.DOI:10.1016/j.nonrwa.2015.12.002.
[5] GAO S J, TENG Z D, XIE D H. Analysis of a delayed SIR epidemic model with pulse vaccination[J].Chaos, Solitons & Fractals,2009,40(2): 1004-1011.DOI: 10.1016/j.chaos.2007.08.056.
[6] FRANCESCHETTI A, PUGLIESE A. Threshold behaviour of a SIR epidemic model with age structure and immigration[J].Journal of Mathematical Biology,2008,57(1):1-27.DOI: 10.1007/s00285-007-0143-1.
[7] LIN Y G, JIANG D Q. Threshold behavior in a stochastic SIS epidemic model with standard incidence[J].Journal of Dynamics Differential Equations,2014,26(4): 1079-1094.DOI: 10.1007/s10884-014-9408-8.
[8] LI M Y, MULDOWNEY J S. Global stability for the SEIR model in epidemiology[J].Mathematics Biosciences,1995,125(2): 155-164.DOI:10.1016/0025-5564(95)92756-5.
[9] LI K Z, XU Z P, ZHU G H. Global stability of a susceptible-infected-susceptible epidemic model on networks with individual awareness[J].Chinese Physics B, 2014,23(11): 118904.DOI: 10.1088/1674-1056/23/11/118904.
[10]LI M Y, MULDOWNEY J S. A geometric approach to the global stability problems[J].SIAM Journal on Mathematical Analysis,1996,27(4): 1070-1083.DOI:10.1137/s0036141094266449.
[11]NEAL P. The SIS great circle epidemic model[J].Journal of Applied Probability, 2008,45(2): 513-530.DOI:10.1017/S0021900200004393.
[12]LI M Y, GRAEF J R, WANG L C. Global dynamics of an SEIR model with varying total population size[J].Mathematics Biosciences,1999,160(2): 191-213.DOI:10.1016/S0025-5564(99)00030-9.
[13]周艳丽,张卫国. 非线性传染率的随机SIS传染病模型的持久性和灭绝性[J].山东大学学报(理学版),2013,48(10): 68-77.DOI:10.6040/j.issn.1671-9352.0.2013.041.
[14]CAI Y L, JIAO J J, GUI Z J. Environmental variability in a stochastic epidemic model[J].Applied Mathematics and Computation,2018,329: 210-226.DOI:10.1016/j.amc.2018.02.009.
[15]ZHAO Y, YUAN S, MA J. Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment[J].Bulletin of Mathematical Biology,2015,77(7): 1285-1326.DOI: 10.1007/s11538-015-0086-4.
[16]ALLEN E. Environmental variability and mean-reverting processes[J].Discrete and Continuous Dynamical Systems:Series B,2017,21(7): 2073-2089.DOI:10.1142/S0219525900000224.
[17]DUFFIE D. Dynamic asset pricing theory[M].Princeton,New Jersey: Princeton University Press, 1996.
[18]WU F, MAO X R, CHEN K. A highly sensitive mean-reverting process in finance and the Euler-Maruyama approximations[J].Journal of Mathematical Analysis and Applications,2008,348(1): 540-554.DOI:10.1016/j.jmaa.2008.07.069.
[19]TROST D C, LI E A O, OSTROFF J H, et al. A model for liver homeostasis using modified mean-reverting Ornstein-Uhlenbeck process[J].Computational and Mathematical Methods in Medicine,2010,11(1): 27-47.DOI: 10.1080/17486700802653925.
[20]ANTOSHIN S. Investment under uncertainty[J].Econometrica,1971,39(5):659-681.DOI:10.2307/1909571.
[1] LI Haiyan, WEI Yuming, PENG Huaqin. Persistence and Extinction of a Stochastic SIRS EpidemicModel with Double Epidemic Hypothesis [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 144-155.
[2] XING Wei,GAO Jinfang,YAN Qisheng,ZHOU Qihua. An SIQR Epidemic Model with Nonlinear Incidence Rateand Impulsive Vaccination [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 58-65.
[3] HUANG Kaijiao, XIAO Feiyan. A Stochastic Predator-prey System with Lévy Jumps [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(2): 66-72.
[4] HU Hua. Generalized Ornstein-Uhlenbeck Processes Associatedwith Martingale and Its Application in Finance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(1): 84-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] QIN Yingying, QI Guangchao, LIANG Shichu. Effects of Eichhornia crassipes Aqueous Extracts on Seed Germination of Ottelia acuminata var. jingxiensis[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 87 -92 .
[2] BAO Jinping, ZHENG Lianbin, YU Keli, SONG Xue, TIAN Jinyuan, DONG Wenjing. Skinfold Thickness Characteristics of Yi Adults in Daliangshan,China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 107 -112 .
[3] LIN Yongsheng, PEI Jianguo, ZOU Shengzhang, DU Yuchao, LU Li. Red Bed Karst and Its Hydrochemical Characteristics of Groundwater in the Downstream of Qingjiang River, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 113 -120 .
[4] ZHANG Ru, ZHANG Bei, REN Hongrui. Spatio-temporal Dynamics Analysis and Its Affecting Factors of Cropland Loss in Xuangang Mining Area, Shanxi, China[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 121 -132 .
[5] TENG Zhijun, LÜ Jinling, GUO Liwen, XU Yuanyuan. Coverage Strategy of Wireless Sensor Network Based on Improved Particle Swarm Optimization Algorithm[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 9 -16 .
[6] LIU Ming, ZHANG Shuangquan, HE Yude. Classification Study of Differential Telecom Users Based on SOM Neural Network[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 17 -24 .
[7] MIAO Xinyan, ZHANG Long, LUO Yantao, PAN Lijun. Study on a Class of Alternative Competition-Cooperation Hybrid Population Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 25 -31 .
[8] HUANG Rongli, LI Changyou, WANG Minqing. Bernstein's Theorem for a Class of Ordinary Differential Equations Ⅱ[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 50 -55 .
[9] FENG Xiu, MA Nannan, ZHI Hongtao, HAN Shuangqiao, ZHANG Xiang. Removal of Low Concentration Cadmium Ion in the Wastewater by Heavy Metal Capturing Agent UDTC[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 63 -67 .
[10] LI Guoqing, XU Chengting, WANG Lixin, HUANG Jun, JIAO Bing, QIN Jiangke. Extraction and Anti-inflammatory Activities of Two Polyphenols from the Cake of Camellia oleifera Abel.[J]. Journal of Guangxi Normal University(Natural Science Edition), 2018, 36(3): 68 -75 .