Journal of Guangxi Normal University(Natural Science Edition) ›› 2018, Vol. 36 ›› Issue (3): 32-40.doi: 10.16088/j.issn.1001-6600.2018.03.005

• Orginal Article • Previous Articles     Next Articles

A Stochastic Predator-prey System with Beddington-DeAngelis Functional Response

HUANG Kaijiao, XIAO Feiyan*   

  1. College of Mathematics and Statistics, Guangxi Normal University,Guilin Guangxi 541006,China
  • Received:2017-10-18 Online:2018-07-17 Published:2018-07-17

Abstract: Based on a stochastic Beddington-DeAngelis predator-prey system with Beddington-DeAngelis functional response,taking the complex coupled mode of two noise sources into account, a more complex system is investigated in this paper. Using the construction of Lyapunov functions and stopping time technique,the existence of global unique positive solution is obtained. Consequently, it is shown that the solution of the system is stochastically ultimate bounded. Finally,some sufficient conditions of stochastically global asymptotic stability are established, numerical experiments are conducted based on Matlab and Milstein method to verify the main conclusions of the stochastically global asymptotic stability.

Key words: Beddington-DeAngelis functional response, white noise, stochastically global asymptotic stabilit

CLC Number: 

  • O175
[1] BEDDINGTON J R.Mutual interference between parasites or predators and its effect on searching efficiency[J]. Journal of Animal Ecology,1975,44(1):331-340. DOI:10.2307/3866.
[2] ZENG Zhijun, FAN Meng.Study on a non-autonomous predator-prey system with Beddington-DeAngelis functional response[J]. Mathematical and Computer Modelling, 2008, 48(11/12):1755-1764. DOI:10.1016/j.mcm.2008.05.052.
[3] 许生虎,伏升茂.带Beddington-DeAngelis功能反应项的捕食者-食饵扩散模型的稳定性[J].应用数学,2008,21(2):345-353.
[4] 王克. 随机生物数学模型[M]. 北京:科学出版社,2010.
[5] 刘显清. 随机生物种群系统的动力学性质分析[D]. 成都:电子科技大学, 2014.
[6] 柳晓燕. 一类食饵相互合作的具Beddington-DeAngelis功能反应的随机捕食系统的动力学性质[D]. 太原:太原理工大学, 2016.
[7] 黄开娇, 肖飞雁. 一类带Lévy噪声的随机捕食—被捕食系统[J]. 广西师范大学学报(自然科学版), 2017, 35(2):66-72.DOI:10.16088/j.issn.1001-6600.2017.02.010.
[8] LIU Meng,WANG Ke.Global stability of a nonlinear stochastic predator-prey system with Beddington-DeAngelis functional response[J]. Communications in Nonlinear Science and Numerical Simulation,2011,16(3):1114-1121. DOI:10.1016/j.cnsns.2010.06.015.
[9] 刘显清, 钟守铭, 项丽江. 具有Crowley-Martin型功能反应的随机捕食-被捕食系统的稳定性[J]. 西南科技大学学报, 2014,29(1):82-86. DOI:10.3969/j.issn.1671-8755.2014.01.018.
[10] 牛嗣永, 靳艳飞. 一类随机Harrison型捕食与被捕食系统的稳定性分析[J]. 动力学与控制学报, 2016, 14(3):276-282. DOI:10.6052/1672-6553-2015-022.
[11] MAO Xuerong.Stochastic differential equations and their applications[M].Chichester:Horwood Publishing Limited,1997:51-59.
[12] MAO Xuerong,YUAN Chenggui,ZOU Jiezhong.Stochastic differential delay equations of population dynamics[J]. Journal of Mathematical Analysis and Applications,2005,304(1):296-320. DOI:10.1016/j.jmaa.2004.09.027.
[13] HIGHAM D J.An algorithmic introduction to numerical simulation of stochastic differential equations[J]. Siam Review,2001,43(3):525-546. DOI:10.1137/S0036144500378302.
[1] JIAO Mengqian, PENG Ruyue, HUANG Wentao, JIANG Guirong. Random Response of Rolling Motion of Delta Wing Aircraft under External and Parametric Excitations [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 34-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!