Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (6): 109-115.doi: 10.16088/j.issn.1001-6600.2021102002
Previous Articles Next Articles
LIU Jukun1, HUANG Wentao2*, LIU Hongpu1
CLC Number:
[1] SHI S L. A concrete example of the existence of four limit cycles for plane quadratic sytems[J]. Scientia Sinica, 1980, 23(2): 153-158. [2] LI C Z, LIU C J, YANG J Z. A cubic system with thirteen limit cycles[J]. Journal of Differential Equations, 2009, 246(9): 3609-3619. [3] LI J B, LIU Y R. New results on the study of Zq-equivariant planar polynomial vector fields[J]. Qualitative Theory of Dynamical Systems, 2010, 9(1): 167-219. [4] 吴岱芩,黄文韬,吴燕兰.一类三次Kolmogorov系统的极限环[J].桂林电子科技大学学报,2016,36(2): 160-163. [5] 宋海风,彭临平.一个三次等时中心在非光滑扰动下的极限环分支[J].数学杂志,2019,39(3): 431-439. [6] 张二丽,邢玉清.具有不变直线的非Hamilton系统的极限环分支[J].广西师范大学学报(自然科学版),2020,38(3): 45-51. [7] 罗勇,陆征一.三维Lotka-Volterra系统的动力学行为与极限环构造[J].系统科学与数学,2009,29(9): 1256-1265. [8] GAD X Y, XING Y P. Linit cycles for a class of there-dimensional polynomial differential systems near the z-axis[J]. Jouranl of Shanghai Normal University (Natural Sciences),2010,39(3): 228-234. [9] TIAN Y, YU P. Seven limit cycles around a focus point in a simple three-dimensional quadratic vector field[J]. International Journal of Bifurcation and Chaos, 2014, 24(6): 1450083. [10] YU P, HAN M A. Ten limit cycles around a center-type singular point in a 3-d quadratic system with quadratic perturbation[J]. Applied Mathematics Letters, 2015, 44: 17-20. [11] DU C X, LIU Y R, HUANG W T. A class of three-dimensional quadratic systems with ten limit cycles[J]. International Journal of Bifurcation and Chaos, 2016, 26(9): 1650149. [12] GUO L G, YU P, CHEN Y F. Twelve limit cycles in 3D quadratic vector fields with Z3 symmetry[J]. International Journal of Bifurcation and Chaos, 2018, 28(11): 1850139. [13] GUO L G, YU P, CHEN Y F. Bifurcation analysis on a class of three-dimensional quadratic systems with twelve limit cycles[J]. Applied Mathematics and Computation, 2019, 363: 124577. [14] WANG Q L, LIU Y R, CHEN H B. Hopf bifurcation for a class of three-dimensional nonlinear dynamic systems[J]. Bulletin des Sciences Mathématiques, 2010, 134(7): 786-798. [15] DU C X, WANG Q L, HUANG W T. Three-dimensional hopf bifurcation for a class of cubic Kolmogorov model[J]. International Journal of Bifurcation and Chaos, 2014,24(3): 1450036. [16] 古结平.高维微分系统的极限环、等时中心与非线性波方程的行波解[D].桂林: 广西师范大学,2021. [17] 周志明.几类高维系统的局部分支[D].上海: 上海师范大学,2017. [18] 马知恩, 周义仓, 李承治.常微分方程定性与稳定性方法[M].第2版.北京: 科学出版社, 2015: 143-144. |
[1] | HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126. |
[2] | XU Lunhui, CAO Yuchao, LIN Peiqun. Location and Dispatching of Multiple Emergency Materials Center Based on Fusion Immune Optimization and Genetic Algorithm [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 1-13. |
[3] | ZHANG Erli, XING Yuqing. Bifurcation of Limit Cycle for Non-Hamilton System with Invariant Straight Lines [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 45-51. |
[4] | LI Zhanyong, JIANG Guirong. Some New Results on Lyapunov-branch Theorem [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 128-133. |
[5] | HE Dongping,HUANG Wentao ,WANG Qinlong. Limit Cycle Flutter and Chaostic Motion of Two-Dimensional Airfoil System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 87-95. |
[6] | LI Xian-xian, GAO Qi. A Distributed Routing Approach for Datacenter-oriented Virtual Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 100-108. |
[7] | HUANG Yi-fei, YI Zhong, QIN Qing-ling. Zero-divisor Graph of Group Ring ZnD4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 15-20. |
|