Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (5): 433-444.doi: 10.16088/j.issn.1001-6600.2020022803

Previous Articles     Next Articles

Complex Dynamics of a Six-dimensional Hyperchaotic System with Four Positive Lyapunov Exponents

SHAO Huiting, YANG Qigui*   

  1. School of Mathematics, South China University of Technology, Guangzhou Guangdong 510640, China
  • Received:2022-02-28 Revised:2022-03-26 Online:2022-09-25 Published:2022-10-18

Abstract: Based on the Lorenz system, a new six-dimensional hyperchaotic system with four positive Lyapunov exponents is found with only one hyperbolic equilibrium point by using coupling techniques and linear feedback control in this paper. Meanwhile, the system has three positive Lyapunov exponents for infinitely many equilibrium lines. The stability of the hyperbolic equilibrium point is analyzed by using Routh-Hurwitz criterion, and the existence of Hopf bifurcation is proved. Using computer simulation techniques such as phase diagram, Lyapunov exponential spectrum, Poincaré map, and bifurcation diagram, the complex dynamic evolution process of the six-dimensional hyperchaotic system from periodic, quasi-periodic, chaotic to hyperchaotic is analyzed numerically.

Key words: six-dimensional hyperchaotic system, attractor, Hopf bifurcation, complex dynamics, stability

CLC Number: 

  • O175
[1]HIRSCH M W, SMALE S, DEVANEY R L. Differential equations, dynamical systems, and an introduction to chaos[M]. 2nd ed. Amsterdam: Elsevier/Academic Press, 2004: 1-15.
[2]陈关荣, 吕金虎. Lorenz 系统族的动力学分析、控制与同步[M]. 北京:科学出版社, 2003: 1-128.
[3]LORENZ E N. Deterministic non-periodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20: 130-141.
[4]RÖSSLER O E. An equation for hyperchaos[J]. Physics Letters A, 1979, 71(2/3): 155-157.
[5]MATSUMOTO T, CHUA L, KOBAYASHI K. Hyper chaos: laboratory experiment and numerical confirmation[J]. IEEE Transactions on Circuits and Systems, 1986, 33(11): 1143-1147.
[6]KAPITANIAK T, CHUA L O, ZHONG G Q. Experimental hyperchaos in coupled Chua’s circuits[J]. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications, 1994, 41(7): 499-503.
[7]LI Y X, TANG W K S, CHEN G R. Hyperchaos evolved from the generalized Lorenz equation[J]. International Journal of Circuit Theory and Applications, 2005, 33(4): 235-251.
[8]YANG Q G, LIU Y J. A hyperchaotic system from a chaotic system with one saddle and two stable node-foci[J]. Journal of Mathematical Analysis and Applications, 2009, 360: 293-306.
[9]YANG Q G, ZHANG K M, CHEN G R. Hyperchaotic attractors from a linearly controlled Lorenz system[J]. Nonlinear Analysis: Real World Applications, 2009, 10(3): 1601-1617.
[10]HU G S. Generating hyperchaotic attractors with three positive Lyapunov exponents via state feedback control[J]. International Journal of Bifurcation and Chaos, 2009, 19(2): 651-660.
[11]张美华. 一个新的五维超混沌系统的复杂性及同步研究[D]. 广州: 华南理工大学, 2010.
[12]YANG Q G, CHEN C T. A 5D hyperchaotic system with three positive Lyapunov exponents coined[J]. International Journal of Bifurcation and Chaos, 2013, 23(6): 1350109.
[13]YANG Q G, OSMAN W M, CHEN C T. A new 6D hyperchaotic system with four positive Lyapunov exponents coined[J]. International Journal of Bifurcation and Chaos, 2015, 25(4): 1550060.
[14]YANG Q G, ZHU D Y, YANG L B. A new 7D hyperchaoticsystem with five positive Lyapunov exponents coined[J]. International Journal of Bifurcation and Chaos, 2018, 28(5): 1850057.
[15]CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7): 1465-1466.
[16]LÜ J H, CHEN G R. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3): 659-661.
[17]YANG Q G, CHEN G R. A chaotic system with one saddle and two stable node-foci[J]. International Journal of Bifurcation and Chaos, 2008, 18(5): 1393-1414.
[18]吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用[M]. 武汉:武汉大学出版社, 2002: 33-40.
[19]张锦炎, 冯贝叶. 常微分方程几何理论与分支问题[M]. 北京: 北京大学出版社, 2019: 329-378.
[20]HASSARD B D, KAZARINOFF N D, WAN Y H. Theory and applications of Hopf bifurcation[M]. Cambridge: Cambridge University Press, 1981: 14-70.
[21]WIGGINS S. Introduction to applied nonlinear dynamical system and chaos[M]. New York:Springer, 2003: 608-615.
[1] HUANG Wentao, GU Jieping, WANG Qinlong. Limit Cycles and Isochronous Centers of Three-dimensional Differential Systems [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 104-126.
[2] XU Wangjun, CAO Jinde, WU Daiyong, SHEN Chuansheng. Stability of a Prey-predator Model with Migration and Allee Effects [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 103-115.
[3] ZHANG Wanjing, LIN Zhigui. Turing Instability of a Parasite-host Model on Growing Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 132-139.
[4] RUAN Wenjing, YANG Qigui. Research on Complex Dynamics of a New Four-dimensional Hyperchaotic System with Finite and Infinite Isolated Singularities [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 173-181.
[5] CHEN Dong, HU Kui. Cover Gorenstein AC-flat Dimensions [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 51-55.
[6] ZHENG Tao, ZHOU Xinran, ZHANG Long. Global Asymptotic Stability of Predator-Competition-Cooperative Hybrid Population Models of Three Species [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 64-70.
[7] WANG Junjie, WEN Xueyan, XU Kesheng, YU Ming. An Improved Stack Algorithm Based on Local Sensitive Hash [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(4): 21-31.
[8] CHEN Xiong, ZHU Yu, FENG Ke, YU Tongwei. Identity Authentication of Power System Safetyand Stability Control Terminals Based on Blockchain [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 8-18.
[9] ZHANG Jie, LI Xiaojun. Existence of Uniform Random Attractor for NonautonomousStochastic Reaction-diffusion Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 134-143.
[10] SHE Lianbing, GAO Yunlong. Backward-compact Dynamics for Non-autonomous Navier-Stokes Equations on Unbounded Domains [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(1): 41-46.
[11] LUO Lan, ZHOU Nan, SI Jie. New Delay Partition Method for Robust Stability of Uncertain Cellular Neural Networks with Time-Varying Delays [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 45-52.
[12] HONG Lingling, YANG Qigui. Research on Complex Dynamics of a New 4D Hyperchaotic System [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 96-105.
[13] WU Juan, ZHU Hongyang, MEI Ping, CHEN Wu, LI Zhongbao. Polymethyl Methacrylate Modified Nano-Silica and Its Stabilizing Effect on Pickering Emulsion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(3): 120-131.
[14] CHEN Siyu, ZOU Yanli, ZHOU Jian, TAN Huazhen. Study on the Power Allocation of Power Generators and Unbalanced Development of Loadson Power Grids [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 52-59.
[15] HAN Huiqing, CAI Guangpeng, YIN Changying, MA Geng, ZHANG Yingjia, LU Yi. Analysis of Landscape Stability in Middle and Upper Reaches of the Wujiang River in 2000 and 2015 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 197-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHANG Xilong, HAN Meng, CHEN Zhiqiang, WU Hongxin, LI Muhang. Survey of Ensemble Classification Methods for Complex Data Stream[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 1 -21 .
[2] TONG Lingchen, LI Qiang, YUE Pengpeng. Research Progress and Prospects of Karst Soil Organic Carbon Based on CiteSpace[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 22 -34 .
[3] TIE Jun, LONG Juanjuan, ZHENG Lu, NIU Yue, SONG Yanlin. Tomato Leaf Disease Recognition Model Based on SK-EfficientNet[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 104 -114 .
[4] WENG Ye, SHAO Desheng, GAN Shu. Principal Component Liu Estimation Method of the Equation    Constrained Ⅲ-Conditioned Least Squares[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 115 -125 .
[5] QIN Chengfu, MO Fenmei. Structure ofC3-and C4-Critical Graphs[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(4): 145 -153 .
[6] HE Qing, LIU Jian, WEI Lianfu. Single-Photon Detectors as the Physical Limit Detections of Weak Electromagnetic Signals[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 1 -23 .
[7] TIAN Ruiqian, SONG Shuxiang, LIU Zhenyu, CEN Mingcan, JIANG Pinqun, CAI Chaobo. Research Progress of Successive Approximation Register Analog-to-Digital Converter[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 24 -35 .
[8] ZHANG Shichao, LI Jiaye. Knowledge Matrix Representation[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 36 -48 .
[9] LIANG Yuting, LUO Yuling, ZHANG Shunsheng. Review on Chaotic Image Encryption Based on Compressed Sensing[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 49 -58 .
[10] HAO Yaru, DONG Li, XU Ke, LI Xianxian. Interpretability of Pre-trained Language Models: A Survey[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(5): 59 -71 .