Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (4): 104-114.doi: 10.16088/j.issn.1001-6600.2021120101

Previous Articles     Next Articles

Tomato Leaf Disease Recognition Model Based on SK-EfficientNet

TIE Jun1,2*, LONG Juanjuan1,2, ZHENG Lu1,2, NIU Yue1,2, SONG Yanlin1,2   

  1. 1. School of Computer Science, South-Central Minzu University, Wuhan Hubei 430074, China;
    2. Hubei Provincial Engineering Research Center for Intelligent Management of Manufacturing Enterprises, Wuhan Hubei 430074, China
  • Published:2022-08-05

Abstract: To solve the problems of the large amount of network parameters, low accuracy, and difficulty in deploying the mobile terminal model of the current deep learning model for tomato leaf diseased identification, a tomato leaf disease identification method based on SK-EfficientNet is proposed. The lightweight model EfficientNet is used as the benchmark model, and the selective convolution kernel mechanism SKNet is used to replace the SENet in the EfficientNet core module MBConv, so that the convolution kernel can adaptively chooses the size of the receptive field according to the multi-scale information of the input features. This method improves the ability to extract image features while making more effective use of parameters.Through multiple sets of comparative experiments, the results show that the training accuracy of the improved model has been further improved, and the model parameter is 3.83 MiB.The average accuracy rate on the PlantVillage data set is 99.64%, and the recognition accuracy of SK-EfficientNet-B2 is the highest; in natural scenes, the average accuracy rate is 3.81 percentage point higher than the original model.The results show that the improved model can effectively increase the accuracy of tomato leaf disease recognition in natural scenes, which provide a reference for the deployment of tomato leaf disease recognition models on mobile terminals.

Key words: tomato leaves, disease identification, EfficientNet network, SKNet, MBConv

CLC Number: 

  • TP391.41
[1] 柴毅, 黄席樾, 何离庆, 等. 番茄栽培病虫害防治知识表示[J]. 重庆大学学报(自然科学版), 2000, 23(6): 56-58. DOI: 10.11835/j.issn.1000-582X.2000.06.018.
[2]贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(增刊): 313-317. DOI: 10.6041/j.issn.1000-1298.2019.S0.048.
[3]王翔宇, 温皓杰, 李鑫星, 等. 农业主要病害检测与预警技术研究进展分析[J]. 农业机械学报, 2016, 47(9): 266-277. DOI: 10.6041/j.issn.1000-1298.2016.09.037.
[4]魏丽冉, 岳峻, 李振波, 等. 基于核函数支持向量机的植物叶部病害多分类检测方法[J]. 农业机械学报, 2017, 48(增刊): 166-171. DOI: 10.6041/j.issn.1000-1298.2017.S0.027.
[5]XIE C Q, HE Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves[J]. Sensors, 2016, 16(5): 676. DOI: 10.3390/s16050676.
[6]柴阿丽, 李宝聚, 石延霞, 等. 基于计算机视觉技术的番茄叶部病害识别[J]. 园艺学报, 2010, 37(9): 1423-1430. DOI: 10.16420/j.issn.0513-353x.2010.09.030.
[7]刘君, 王学伟. 融合CNN多卷积特征与HOG的番茄叶部病害检测算法[J]. 北方园艺, 2020(4): 147-152. DOI: 10.11937/bfyy.20193405.
[8]唐熔钗, 伍锡如. 基于改进YOLO-V3网络的百香果实时检测[J]. 广西师范大学学报(自然科学版), 2020, 38(6): 32-39. DOI: 10.16088/j.issn.1001-6600.2020.06.004.
[9]THANGARAJ R, ANANDAMURUGAN S, PANDIYAN P, et al. Artificial intelligence in tomato leaf disease detection: a comprehensive review and discussion[J]. Journal of Plant Diseases and Protection, 2022, 129(3): 469-488. DOI:10.1007/s41348-021-00500-8.
[10]JIA S J, JIA P Y, HU S P,et al. Automatic detection of tomato diseases and pests based on leaf images[C]// 2017 Chinese Automation Congress (CAC). Piscataway NJ: IEEE Press,2017:3507-3510. DOI: 10.1109/CAC.2017.8243388.
[11]TM P, PRANATHI A, SAIASHRITHA K, et al. Tomato leaf disease detection using convolutional neural networks[C]// 2018 Eleventh International Conference on Contemporary Computing (IC3). Los Alamitos, CA: IEEE Computer Society, 2018: 314-318. DOI: 10.1109/IC3.2018.8530532.
[12]KAUR M, BHATIA R. Development of an improved tomato leaf disease detection and classification method[C]// 2019 IEEE Conference on Information and Communication Technology. Piscataway, NJ: IEEE Press, 2019: 1-5.DOI: 10.1109/ CICT48419.2019.9066230.
[13]GONZALEZ-HUITRON V, LEN-BORGES J A, RODRIGUEZ-MATA A E, et al. Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4[J]. Computers and Electronics in Agriculture, 2021, 181: 105951. DOI: 10.1016/j.compag.2020.105951.
[14]郭小清, 范涛杰, 舒欣. 基于改进Multi-Scale AlexNet的番茄叶部病害图像识别[J]. 农业工程学报, 2019, 35(13): 162-169. DOI: 10.11975/j.issn.1002-6819.2019.13.018.
[15]汤文亮, 黄梓锋. 基于知识蒸馏的轻量级番茄叶部病害识别模型[J]. 江苏农业学报, 2021, 37(3): 570-578. DOI: 10.3969/j.issn.1000-4440.2021.03.004.
[16]张宁, 吴华瑞, 韩笑, 等. 基于多尺度和注意力机制的番茄病害识别方法[J]. 浙江农业学报, 2021, 33(7): 1329-1338. DOI: 10.3969/j.issn.1004-1524.2021.07.19.
[17]王美华, 吴振鑫, 周祖光. 基于注意力改进CBAM的农作物病虫害细粒度识别研究[J]. 农业机械学报, 2021, 52(4): 239-247. DOI: 10.6041/j.issn.1000-1298.2021.04.025.
[18]徐智,宁文昌,赵龙阳,等.基于注意力数据增广的细粒度图像分类方法[J]. 桂林电子科技大学学报,2021,41(6):496-503. DOI: 10.16725/j.cnki.cn45-1351/tn.2021.06.006.
[19]VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]// Advances in Neural Information Processing Systems 30 (NIPS 2017). Red Hook, NY: Curran Associates Inc., 2017: 6000-6010.
[20]LETARTE G, PARADIS F, GIGURE P, et al. Importance of self-attentionfor sentiment analysis[C]// Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP. Stroudsburg, PA: Association for Computational Linguistics, 2018: 267-275. DOI: 10.18653/v1/W18-5429.
[21]YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// Computer Vision-ECCV 2018: Lecture Notes in Computer Science 11217. Cham: Springer Nature Switzerland AG, 2018: 334-349. DOI: 10.1007/978-3-030-01261-8_20.
[22]FU J L, ZHENG H L, MEI T. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition[C]// 2017 IEEE Conference on Computer Vision and Pat-tern Recognition (CVPR).Los Alamitos, CA: IEEE Computer Society, 2017: 4476-4484. DOI: 10.1109/CVPR.2017.476.
[23]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[24]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 the IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Los Alamitos, CA: IEEE Computer Society, 2016: 770-778. DOI: 10.1109/CVPR.2016.90.
[25]TAN M X, LE Q V. EfficientNet: rethinking model scaling for convolutional neural networks[C]// Proceedings of the 36th International Conference on Machine Learning. Long Beach, CA: PMLR, 2019: 6105-6114.
[26]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Los Alamitos, CA: IEEE Computer Society, 2019: 510-519. DOI: 10.1109/CVPR.2019.00060.
[27]唐浪, 李慧霞, 颜晨倩, 等. 深度神经网络结构搜索综述[J]. 中国图象图形学报, 2021, 26(2): 245-264. DOI: 10.11834/jig.200202.
[28]ZHANG T, QI G J, XIAO B, et al.Interleaved group convolutions[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Los Alamitos, CA: IEEE Computer Society, 2017: 4383-4392. DOI: 10.1109/ICCV.2017.469.
[29]KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J].Communications of the ACM, 2017, 60(6): 84-90. DOI: 10.1145/3065386.
[30]CHEN L C, PAPANDREOU G, KOKKINOS l, et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convoution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. DOI: 10.1109/TPAMI.2017.2699184.
[1] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[2] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[3] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[4] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[5] ZHANG Weibin, WU Jun, YI Jianbing. Research on Feature Fusion Controlled Items Detection Algorithm Based on RFB Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(4): 34-46.
[6] ZHANG Canlong, LI Yanru, LI Zhixin, WANG Zhiwen. Block Target Tracking Based on Kernel Correlation Filter and Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(5): 12-23.
[7] XIAO Yiqun, SONG Shuxiang, XIA Haiying. Fast Pedestrian Detection Method Based on Multi-Features    and Implementation [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 61-67.
[8] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73.
[9] CAI Bing, ZHANG Canlong, LI Zhixin. Tracking Infrared-visible Target with Joint Histogram [J]. Journal of Guangxi Normal University(Natural Science Edition), 2017, 35(3): 37-44.
[10] HE Peng, LIU Gao-kai, LI Jing-hui. Fatigue Driving Monitoring and Early Warning System Based on Machine Vision [J]. Journal of Guangxi Normal University(Natural Science Edition), 2015, 33(4): 25-29.
[11] WANG Dong-xu, SONG Shu-xiang, JIANG Pin-qun. The Algorithm of Identifying the Front Side of Bamboo Based on BP Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2014, 32(2): 14-19.
[12] MA Xian-bing, SUN Shui-fa, QIN Yin-shi, GUO Qing, XIA Ping. Object Tracking Algorithm of On-line Boosting Based on Particle Filter [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 100-105.
[13] SUN Shui-fa, LI Le-peng, DONG Fang-min, ZOU Yao-bin, CHEN Peng. Bi-histogram Equalization Based on Partially Overlapped Sub-block with Iterative Threshold [J]. Journal of Guangxi Normal University(Natural Science Edition), 2013, 31(3): 119-126.
[14] TANG Zhen-jun, DAI Yu-min, ZHANG Xian-quan, ZHANG Shi-chao. Perceptual Image Hash Function Using DCT-Based Feature Points [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(3): 135-141.
[15] XUE Qiwei, WU Xiru. Vehicle Detection for Autonomous Vehicle System Based on Multi-modal Feature Fusion [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(2): 37-48.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!