Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 66-75.doi: 10.16088/j.issn.1001-6600.2021071202

Previous Articles     Next Articles

CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention

WAN Liming1, ZHANG Xiaoqian2, LIU Zhigui2, SONG Lin2, ZHOU Ying3, LI Li1*   

  1. 1. School of Computer Science and Technology, Southwest University of Science and Technology, Mianyang Sichuan 621000, China;
    2. School of Information Engineering, Southwest University of Science and Technology, Mianyang Sichuan 621000, China;
    3. Department of Radiology, Mianyang Central Hospital, Mianyang Sichuan 621000, China
  • Received:2021-07-12 Revised:2021-09-09 Online:2022-05-25 Published:2022-05-27

Abstract: Lung cancer is one of the cancers with the highest mortality in the world. As an important basis for early diagnosis of lung cancer, accurate segmentation of pulmonary nodules is particularly important. In order to help doctors diagnose lung lesions, an improved UNet lung nodule segmentation method is proposed. First, Efficient Channel Attention for Deep Convolutional Neural Networks(EcaNet) is introduced in the feature extraction part, which improves the UNet segmentation effect and makes it have good generalization ability. At the same time, in order to reduce the number of parameters of the model and improve the segmentation performance of the algorithm, a feature fusion model of depthwise separable convolution is proposed, which replaces the traditional convolution operation with depthwise separable convolution to complete feature fusion. According to the image characteristics of pulmonary nodules, the Dice Loss and the weighted cross entropy (WCE) are combined as a new loss function. To verify the effectiveness of the proposed algorithm Eca-UNet, our evaluated on the LIDC-IDRI public dataset of lung nodules. The results show that the DICE similarity coefficient and MIOU of the Eca-UNet algorithm are 10.47% and 7.34% higher than that of the UNet segmentation algorithm, respectively. At the same time, the training speed has increased by 10.10%, and the prediction speed has increased by 11.56%.

Key words: image segmentation, CT images of pulmonary nodules, attention mechanism, UNet, residual network

CLC Number: 

  • R730.44
[1]赫捷, 李霓, 陈万青,等. 中国肺癌筛查与早诊早治指南(2021,北京)[J]. 中华肿瘤杂志, 2021, 43(3):243-268. DOI:10.3760/cma.j.cn112152-20210119-00060.
[2]钟思华,郭兴明,郑伊能. 改进U-Net网络的肺结节分割方法[J]. 计算机工程与应用,2020,56(17):203-209. DOI:10.3778/j.issn.1002-8331.1911-0124.
[3]RONNEBERGER O, FISCHER P, BROX T. U-net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015. Cham: Springer, 2015: 234-241.DOI:10.1007/978-3-319-24574-4_28.
[4]易三莉,陈建亭,贺建峰. ASR-UNet:一种基于注意力机制改进的视网膜血管分割算法[J]. 山东大学学报(理学版),2021,56(9):13-20.DOI:10.6040/j.issn.1671-9352.0.2020.655.
[5]王海鸥,刘慧,郭强,等.面向医学图像分割的超像素U-Net网络设计[J]. 计算机辅助设计与图形学学报,2019,31(6):1007-1017.
[6]ZHANG Y, CHEN K T, CHANG K T, et al. Automatic breast and fibroglandular tissue segmentation in breast MRI using deep learning by a fully-convolutional residual neural network U-Net[J]. Academic Radiology, 2019, 26(11):1526-1535.DOI:10.1016/j.acra.2019.01.012.
[7]王磐,强彦,杨晓棠,等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程,2021,47(2):307-313. DOI:10.19678/j.issn.1000-3428.0057019.
[8]WU W H, GAO L, DUAN H H, et al. Segmentation of pulmonary nodules in CT images based on 3D-UNET combined with three-dimensional conditional random field optimization[J]. Medical Physics, 2020, 47(9): 4054-4063. DOI:10.1002/mp.14248.
[9]XIAO Z T, LIU B W ,GENG L, et al. Segmentation of lung nodules using improved 3D-UNet neural network[J]. Symmetry, 2020, 12(11):1787. DOI:10.3390/sym12111787.
[10]王雪.基于U-Net多尺度和多维度特征融合的皮肤病变分割方法[J].吉林大学学报(理学版),2021,59(1):123-127.DOI:10.13413/j.cnki.jdxblxb.2020178.
[11]伍长荣,接标,叶明全. CT图像肺结节计算机辅助检测与诊断技术研究综述[J].数据采集与处理,2016,31(5):868-881. DOI:10.16337/j.1004-9037.2016.05.003.
[12]HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway: IEEE, 2016: 770-778.DOI: 10.1109/CVPR.2016.90.
[13]邓文轩,杨航,靳婷.基于注意力机制的图像分类降维方法[J].广西师范大学学报(自然科学版),2021,39(2):32-40. DOI: 10.16088/j.issn.1001-6600.2020090704.
[14]WANG Q L, WU B G, ZHU P F, et al. ECA-Net: efficient channel attention for deep convolutional neural networks[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Piscataway:IEEE, 2020:11531-11539.
[15]SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE,2018: 4510-4520. DOI:10.1109/CVPR. 2018.00474.
[16]徐学良.人工神经网络的发展及现状[J].微电子学,2017,47(2):239-242. DOI:10.13911/j.cnki.1004-3365.2017.02.022.
[17]LIU Y C, TAN D S, CHEN J C, et al. Segmenting hepatic lesions using residual attention U-Net with an adaptive weighted dice loss[C]// 2019 IEEE Conference on Image Processing(ICIP). Piscataway:IEEE, 2019:3322-3326. DOI:10.1109/ICIP.2019.8803471.
[18]KINGMA D P, BA J.Adam: a method for stochastic optimizatio[EB/OL]. (2015-07-23)[2021-07-12]. https://arxiv.org/abs/1412.6980v8. DOI: 10.48550/arXiv.1412.6980.
[19]ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Cham: Springer, 2018: 3-11.DOI:10.1007/978-3-030-00889-5_1.
[1] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[2] ZHANG Ping, XU Qiaozhi. Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 76-87.
[3] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[4] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[5] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[6] WANG Jian, ZHENG Qifan, LI Chao, SHI Jing. Remote Supervision Relationship Extraction Based on Encoder and Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 53-60.
[7] WANG Xun, LI Tinghui, PAN Xiao, TIAN Yu. Image Segmentation Method Based on Improved Fuzzy C-means Clustering and Otsu Maximum Variance [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(4): 68-73.
[8] WU Wenya,CHEN Yufeng,XU Jin’an,ZHANG Yujie. High-level Semantic Attention-based Convolutional Neural Networks for Chinese Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 32-41.
[9] YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49.
[10] XIA Haiying. Cervical Cell Images Segmentation Based on Improved SLIC Region Merging [J]. Journal of Guangxi Normal University(Natural Science Edition), 2016, 34(4): 93-100.
[11] LI Jing-wen, ZHANG Zi-ping, GUO Wei-li, SU Hao, LUO Wen-bing. A High Resolution Image Segmentation Method of a Combination ofWatershed and Multi-scale [J]. Journal of Guangxi Normal University(Natural Science Edition), 2012, 30(1): 40-44.
[12] ZHANG Xin-ming, ZHANG Yu-shan, LI Zhen-yun. Image Thresholding Method Based on Improved Moment Preserving [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 185-190.
[13] FENG Jia-li, YANG Run-ze. Application of Attribute Theory in Image Segment [J]. Journal of Guangxi Normal University(Natural Science Edition), 2011, 29(2): 191-194.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .