Journal of Guangxi Normal University(Natural Science Edition) ›› 2022, Vol. 40 ›› Issue (3): 76-87.doi: 10.16088/j.issn.1001-6600.2021070402

Previous Articles     Next Articles

Segmentation of Lung Nodules Based on Multi-receptive Field and Grouping Attention Mechanism

ZHANG Ping, XU Qiaozhi*   

  1. College of Computer Science and Technology, Inner Mongolia Normal University, Hohhot Inner Mongolia 010022,China
  • Received:2021-07-04 Revised:2021-10-17 Online:2022-05-25 Published:2022-05-27

Abstract: It is very important for diagnoses and treatments of lung tumors to segment lung nodules from CT images automatically and effectively. However, the lung nodules usually are very small, their shapes are irregular, and sometimes they are very similar to adjacent tissues and organs in vision, which brings difficulties to the segmentation task. This paper proposes a lung nodules segmentation network MRF-GMA based on multi-receptive field and grouped mixed attention mechanism. Firstly, the multi-receptive field feature aggregation module can capture nodules of different scales; secondly, the grouped mixed attention is used to improve the resolution of nodular pixels; finally, the hybrid loss function is used to optimize the training process to alleviate the class imbalance problem. In the experiment, MRF-GMA is respectively compared with FCN, SEGNET, R2U-NET and Attention U-NET, and the results show that MRF-GMA model has the best performance in DSC, Accuracy and Recall, and has increased by 2.25%, 1.19% and 2.98%, respectively, compared with the Attention U-Net model.

Key words: CT image, lung nodules segmentation, deep learning, feature aggregation, attention mechanism

CLC Number: 

  • R734.2
[1]CAO M M, CHEN W Q. Epidemiology of lung cancer in China[J]. Thoracic Cancer, 2019, 10(1): 3-7. DOI: 10.1111/1759-7714.12916.
[2]SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA: A Cancer Journal for Clinicians, 2020, 70(1): 7-30. DOI: 10.3322/caac.21590.
[3]REEVES A P, CHAN A B, YANKELEVITZ D F, et al. On measuring the change in size of pulmonary nodules[J]. IEEE Transactions on Medical Imaging, 2006, 25(4):435-450. DOI: 10.1109/TMI.2006.871548.
[4]WANG S, ZHOU M, LIU Z Y, et al. Central focused convolutional neural networks: developing a data-driven model for lung nodule segmentation[J]. Medical Image Analysis, 2017, 40:172-183. DOI: 10.1016/j.media.2017.06.014.
[5]MITTAL A, HOODA R, SOFAT S. LF-SegNet: a fully convolutional encoder-decoder network for segmenting lung fields from chest radiographs[J]. Wireless Personal Communications, 2018,101(1): 511-529. DOI: 10.1007/s11277-018-5702-9.
[6]LIU M L, DONG J Y, DONG X H, et al. Segmentation of lung nodule in CT images based on mask R-CNN[C]// 2018 9th International Conference on Awareness Science and Technology (iCAST). Piscataway: IEEE, 2018:1-6. DOI: 10.1109/ICAwST.2018.8517248.
[7]SINGADKAR G, MAHAJAN A, THAKUR M, et al. Deep deconvolutional residual network based automatic lung nodule segmentation[J]. Journal of Digital Imaging, 2020, 33(3):678-684. DOI: 10.1007/s10278-019-00301-4.
[8]WANG S, ZHOU M, GEVAERT O, et al. A multi-view deep convolutional neural networks for lung nodule segmentation[C]// 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Piscataway: IEEE, 2017:1752-1755. DOI: 10.1109/EMBC.2017.8037182.
[9]张花齐, 王光磊, 李艳,等. CT图像肺结节的全自动算法研究[J]. 激光杂志, 2019, 40(4):59-63.
[10]HUANG X, SUN W Q, TSENG T L B, et al. Fast and fully-automated detection and segmentation of pulmonary nodules in thoracic CT scans using deep convolutional neural networks[J]. Computerized Medical Imaging and Graphics, 2019, 74: 25-36. DOI: 10.1016/j.compmedimag.2019.02.003.
[11]RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assited Intervention-MICCAI 2015. Cham: Springer, 2015:234-241. DOI: 10.1007/978-3-319-24574-4_28.
[12]HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transation on Pattern Analysis and Machine Intelligence, 2019, 42(8):2011-2023. DOI: 10.1109/TPAMI.2019.2913372.
[13]WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// Computer Vision-ECCV 2018, Cham: Springer, 2018: 3-19. DOI: 10.1007/978-3-030-01234-2_1.
[14]郝晓宇,熊俊峰,薛旭东,等.融合双注意力机制3D U-Net的肺肿瘤分割[J].中国图象图形学报,2020,25(10):2119-2127. DOI: 1006-8961(2020)10-2119-09.
[15]王磐,强彦,杨晓棠,等.基于双注意力3D-UNet的肺结节分割网络模型[J].计算机工程,2021,47(2):307-313. DOI: 10.19678/j.issn.1000-3428.0057019.
[16]LI X, WANG W H, HU X L, et al. Selective kernel networks[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 2020:510-519. DOI: 10.1109/CVPR.2019.00060.
[17]WU Y X, HE K M. Group normalization[J]. International Journal of Computer Vision, 2020, 128(3):742-755. DOI: 10.1007/s11263-019-01198-w.
[18]李小光. 混合损失函数支持向量回归机的性能研究[J]. 西北大学学报(自然科学版), 2011,41(2):210-214.
[19]SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4):640-651. DOI: 10.1109/CVPR.2015.7298965.
[20]BADRINARAYANAN V,KENDALL A,CIPOLLA R. SegNet:a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2017, 39(12): 2481-2495. DOI: 10.1109/TPAMI.2016.2644615.
[21]ALOM M Z, HASAN M, YAKOPCIC C, et al. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation[EB/OL].(2018-02-20)[2021-05-30]. https://arxiv.org/abs/1802.06955v1. DOI: 10.48550/arXiv.1802.06955.
[22]OKTAY O, SCHLEMPER J, FOLGOC L L, et al. Attention U-Net: learning where to look for the pancreas[EB/OL].(2018-04-11)[2021-05-30].https://arxiv.org/abs/1804.03999v1. DOI: 10.48550/arXiv.1804.03999.
[1] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40-48.
[2] WAN Liming, ZHANG Xiaoqian, LIU Zhigui, SONG Lin, ZHOU Ying, LI Li. CT Image Segmentation of UNet Pulmonary Nodules Based on Efficient Channel Attention [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 66-75.
[3] LI Yongjie, ZHOU Guihong, LIU Bo. Fusion Algorithm of Face Detection and Head Pose Estimation Based on YOLOv3 Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 95-103.
[4] WU Jun, OUYANG Aijia, ZHANG Lin. Phosphorylation Site Prediction Model Based on Multi-head Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 161-171.
[5] YAN Longchuan, LI Yan, SONG Hu, ZOU Haodong, WANG Lijun. Web Traffic Prediction Based on Prophet-DeepAR [J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 172-184.
[6] LU Kaifeng, YANG Yilong, LI Zhi. A Web Service Classification Method Using BERT and DPCNN [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(6): 87-98.
[7] WU Lingyu, LAN Yang, XIA Haiying. Retinal Image Registration Using Convolutional Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 122-133.
[8] CHEN Wenkang, LU Shenglian, LIU Binghao, LI Guo, LIU Xiaoyu, CHEN Ming. Real-time Citrus Recognition under Orchard Environment by Improved YOLOv4 [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(5): 134-146.
[9] YANG Zhou, FAN Yixing, ZHU Xiaofei, GUO Jiafeng, WANG Yue. Survey on Modeling Factors of Neural Information Retrieval Model [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 1-12.
[10] DENG Wenxuan, YANG Hang, JIN Ting. A Dimensionality-reduction Method Based on Attention Mechanismon Image Classification [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 32-40.
[11] XUE Tao, QIU Senhui, LU Hao, QIN Xingsheng. Exchange Rate Prediction Based on Empirical Mode Decomposition and Multi-branch LSTM Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2021, 39(2): 41-50.
[12] TANG Rongchai, WU Xiru. Real-time Detection of Passion Fruit Based on Improved YOLO-V3 Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(6): 32-39.
[13] ZHANG Mingyu,ZHAO Meng,CAI Fuhong,LIANG Yu,WANG Xinhong. Wave Power Prediction Based on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(3): 25-32.
[14] LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63.
[15] LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] AI Yan, JIA Nan, WANG Yuan, GUO Jing, PAN Dongdong. Review of Statistical Methods and Applications of Genetic Association Analysis for Multiple Traits and Multiple Locus[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 1 -14 .
[2] BAI Defa, XU Xin, WANG Guochang. Review of Generalized Linear Models and Classification for Functional Data[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 15 -29 .
[3] ZENG Qingfan, QIN Yongsong, LI Yufang. Empirical Likelihood Inference for a Class of Spatial Panel Data Models[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 30 -42 .
[4] ZHANG Zhifei, DUAN Qian, LIU Naijia, HUANG Lei. High-dimensional Nonlinear Regression Model Based on JMI[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 43 -56 .
[5] YANG Di, FANG Yangxin, ZHOU Yan. New Category Classification Research Based on MEB and SVM Methods[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 57 -67 .
[6] CHEN Zhongxiu, ZHANG Xingfa, XIONG Qiang, SONG Zefang. Estimation and Test for Asymmetric DAR Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(1): 68 -81 .
[7] DU Jinfeng, WANG Hairong, LIANG Huan, WANG Dong. Progress of Cross-modal Retrieval Methods Based on Representation Learning[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 1 -12 .
[8] LI Muhang, HAN Meng, CHEN Zhiqiang, WU Hongxin, ZHANG Xilong. Survey of Algorithms Oriented to Complex High Utility Pattern Mining[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 13 -30 .
[9] CHAO Rui, ZHANG Kunli, WANG Jiajia, HU Bin, ZHANG Weicong, HAN Yingjie, ZAN Hongying. Construction of Chinese Multimodal Knowledge Base[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 31 -39 .
[10] LI Zhengguang, CHEN Heng, LIN Hongfei. Identification of Adverse Drug Reaction on Social Media Using Bi-directional Language Model[J]. Journal of Guangxi Normal University(Natural Science Edition), 2022, 40(3): 40 -48 .