Journal of Guangxi Normal University(Natural Science Edition) ›› 2020, Vol. 38 ›› Issue (3): 25-32.doi: 10.16088/j.issn.1001-6600.2020.03.004
Previous Articles Next Articles
ZHANG Mingyu1,ZHAO Meng1*,CAI Fuhong1,LIANG Yu2,WANG Xinhong3
CLC Number:
[1] 李琳娜,史宏达,董晓晨.波浪能研究发展概况[J].中国水运,2017,17(7):256-257. [2] 赵波,王成山,张雪松.海岛独立型微电网储能类型选择与商业运营模式探讨[J].电力系统自动化,2013,37(4): 21-27.DOI: 10.7500/AEPS201211014. [3] 白志刚,魏茂兴,罗续业,等.国家海洋能试验场波浪能评估计算[J].天津大学学报(自然科学与工程技术版),2013,46(4):367-372. [4] 郑崇伟,李崇银.全球海域波浪能资源评估的研究进展[J].海洋预报,2016,33(3):76-88.DOI: 10.11737/j.issn.1003-0239.2016.03.011. [5] 赵敏.基于可再生能源接入海岛直流微电网的探讨[J].电力系统及其自动化学报,2014,26(7):87-90.DOI: 10.3969/j.issn.1003-8930.2014.07.016. [6] 杨海民,潘志松,白玮.时间序列预测方法综述[J].计算机科学,2019,46(1):21-28.DOI: 10.11896/j.issn.1002-137X.2019.01.004. [7] 盛松伟,王坤林,吝红军,等.100 kW鹰式波浪能发电装置“万山号”实海况试验[J].太阳能学报,2019,40(3): 709-714. [8] 毛亚郎,陈国波,章怡.海洋能开发的多能互补装置及分布式发电系统[J].海洋开发与管理,2016,33(11):48-54. DOI: 10.3969/j.issn.1005-9857.2016.11.010. [9] 张有兵,包侃侃,杨晓东,等.独立型微电网多目标优化配置[J].浙江工业大学学报,2016,44(6):619-623.DOI: 10.3969/j.issn.1006-4303.2016.06.005. [10]DE ANDRÉS A D,GUANCHE R,MENESES L,et al.Factors that influence array layout on wave energy farms[J]. Ocean Engineering,2014,82:32-41.DOI: 10.1016/j.oceaneng.2014.02.027. [11]GOMES R P F,HENRIQUES J C C,GATO L M C,et al.Wave power extraction of a heaving floating oscillating water column in a wave channel[J].Renewable Energy,2016,99:1262-1275.DOI: 10.1016/j.renene.2016.08.012. [12]戴瑞海,施亦治,姜于,等.基于多Agent的海岛微电网分布式双层控制方法[J].电力系统及其自动化学报,2020,32(3):75-81.DOI:10.19635/j.cnki.csu-epsa.000254. [13]顾丽玲,秦川,鞠平,等.直驱式波浪能发电场的布局优化研究[J].可再生能源,2017,35(3):467-474.DOI: 10.13941/j.cnki.21-1469/tk.2017.03.022. [14]周能萍,吴峰.基于风-浪和灰色模型的波浪能发电系统输出功率短期预测[J].电力自动化设备,2018,38(5):58-63.DOI: 10.16081/j.issn.1006-6047.2018.05.008. [15]朱寿建,李慧,吴迪,等.基于风涌浪分离理论的波浪能短期预测[J].人民长江,2018,49(7):77-80.DOI:10.16232/j.cnki.1001-4179.2018.07.016. [16]张金磊,罗玉玲,付强.基于门控循环单元神经网络的金融时间序列预测[J].广西师范大学学报(自然科学版),2019,37(2):82-89.DOI: 10.16088/j.issn.1001-6600.2019.02.010. [17]张亚群,盛松伟,游亚戈,等.波浪能发电技术应用发展现状及方向[J].新能源进展,2019,7(4):374-378.DOI: 10.3969/j.issn.2095-560X.2019.04.011. [18]权波,杨博辰,胡可奇,等.基于LSTM的船舶航迹预测模型[J].计算机科学,2018,45(增刊2):126-131. [19]杨茂,朱亮.基于FA-PCA-LSTM的光伏发电短期功率预测[J].昆明理工大学学报(自然科学板),2019,44(1): 61-68.DOI: 10.16112/j.cnki.53-1223/n.2019.01.009. [20]黄丽明,陈维政,闫宏飞,等.基于循环神经网络和深度学习的股票预测方法[J].广西师范大学学报(自然科学版),2019,37(1):13-22.DOI: 10.16088/j.issn.1001-6600.2019.01.002. [21]郑泽宇,梁博文,顾思宇.TensorFlow:实战Google深度学习框架[M].2版.北京:电子工业出版社,2018:208-226. [22]GOODFELLOW I,BENGIO Y,COURVILLE A.深度学习[M].赵申剑,黎彧君,李凯,译.北京:人民邮电出版社,2017: 227-253. [23]周志华.机器学习[M].北京:清华大学出版社,2016:97-120. |
[1] | LI Weiyong, LIU Bin, ZHANG Wei, CHEN Yunfang. An Automatic Summarization Model Based on Deep Learning for Chinese [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 51-63. |
[2] | LIU Yingxuan, WU Xiru, XUE Ganggang. Multi-target Real-time Detection for Road Traffic SignsBased on Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2020, 38(2): 96-106. |
[3] | ZHANG Jinlei, LUO Yuling, FU Qiang. Predicting Financial Time Series Based on Gated Recurrent Unit Neural Network [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(2): 82-89. |
[4] | HUANG Liming,CHEN Weizheng,YAN Hongfei,CHEN Chong. A Stock Prediction Method Based on Recurrent Neural Network and Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 13-22. |
[5] | YUE Tianchi, ZHANG Shaowu, YANG Liang, LIN Hongfei, YU Kai. Stance Detection Method Based on Two-Stage Attention Mechanism [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 42-49. |
[6] | YU Chuanming,LI Haonan,AN Lu. Analysis of Text Emotion Cause Based on Multi-task Deep Learning [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 50-61. |
[7] | WANG Qi,QIU Jiahui,RUAN Tong,GAO Daqi,GAO Ju. Recurrent Capsule Network for Clinical Relation Extraction [J]. Journal of Guangxi Normal University(Natural Science Edition), 2019, 37(1): 80-88. |
|